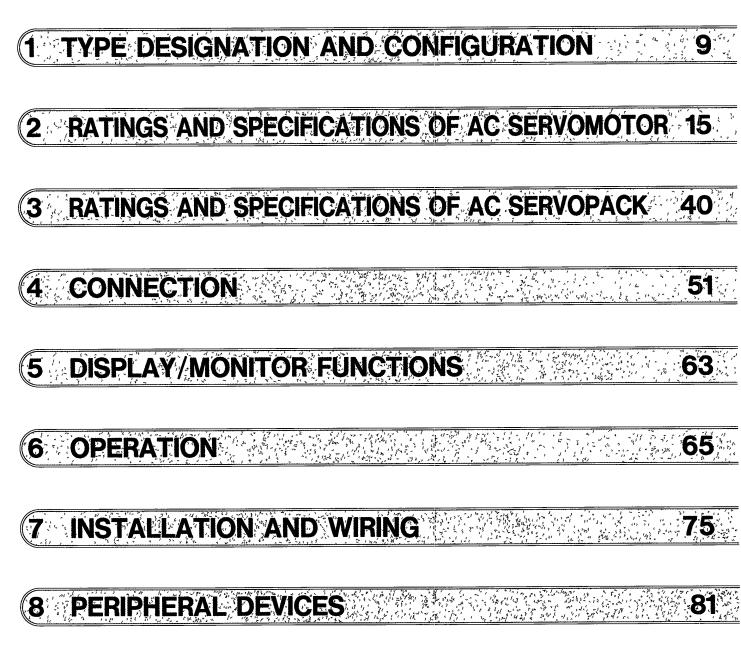

AC SERVO DRIVES

FOR MOTIONPACK-10,-120/POSITIONING CONTROL

SERVOMOTOR TYPES USAMED, USAFED, USAGED, USADED, USASEM, USAREM, USAPEM SERVOPACK CACR-HR AAB(Rack-mounted Type) CACR-HR AB (Base-mounted Type)



Servopack type CACR-HR[]] AAB and -HR[]][]AB can be used only in combination with Motionpack-10 and -120. Only servopack unit cannot be operated.

For operation method, refer to user's manual of Motionpack-10 or -120.

CONTENTS

Page

9 DIMENSIONS 87

CONTENTS

Page

1 TYPE DESIGNATION AND CONFIGURATION	9
1 1 TYPE DESIGNATION ·····	9
1 2 COMBINATION OF AC SERVOPACK AND SERVOMOTOR	10
2 RATINGS AND SPECIFICATIONS OF AC SERVOMOTOR	15
2.1 RATINGS AND SPECIFICATIONS	15
2 1 1 M Series ·····	15
2 1 2 F Series	17
2 1.3 G Series	19
2 1.4 D Series · · · · · · · · · · · · · · · · · · ·	21
2.1.5 S Series	23
2 1 6 R Series (For 200V)	25
2.1.7 R Series (For 100V)	27
2 1 8 P Series · · · · · · · · · · · · · · · · · · ·	29
2 2 MECHANICAL CHARACTERISTICS	31
2.2 1 Mechanical Strength	31
2.2 2 Allowable Radial Load and Thrust Load	31
2 2.3 Mechanical Specifications	32
2.2 4 Rotating Direction · ·····	32
2 2 5 Shock Resistance	32
2.2 6 Vibration Resistance	32
2 2 7 Vibration Class	32
2 3 RECEPTACLES	33
2 3 1 Connector Specifications	33
2.3 2 List of Standard Combination	36
3 RATINGS AND SPECIFICATIONS OF AC SERVOPACK	40
3.1 RATINGS AND SPECIFICATIONS	40
3 2 INTERNAL BLOCK DIAGRAM (Figs 3.1,3 2,3 3)	43
3.2 1 Servopack Type CACR-HRA5AAB1[]]to -HR05AAB1[]]	43
3 2.2 Servopack Type CACR-HR10AAB, HR15AAB · · ····	44
3 2 3 Servopack Type CACR-HR[[]]AB	45
3 3 PROTECTIVE CIRCUIT	46
3 4 PRECAUTIONS FOR APPLICATION	48
3 4.1 Minus Load · · · · · · · · · · · · · · · · · · ·	48
3.4.2 Load Inertia (JL)	48
3 4 3 Allowable Cyclic Operating Frequency	48
3 4.4 High Voltage Line	49
3 5 POWER LOSS ·····	50
4 CONNECTION	51
4 1 TYPICAL CONNECTION · ·····	51

Page

4.1 1 Connection between Servopack Type HREEAAB and Motionpack-10	1
4.1.2 Connection between Servopack Type HREEAB and Motionpack-10	2
4 1 3 Connection between Servopack Type HR[[1]]AB and Motionpack-120 55	3
4.1.4 Connection between Servopack Type HR[[1]]AB and Motionpack-120	4
4.2 MAIN CIRCUIT TERMINAL NAMES AND OUTLINE	5
4 3 CONNECTOR 2CN (FOR I/O SIGNAL) 5	5
4 3 1 Applicable Receptacle Specifications	5
4.3.2 Connector 2CN Layout and Connection 5	6
4 3 3 Connector 2CN I/O Signals and How to Use 5	7
4 4 CONNECTOR 3CN (FOR ENCODER) 5	8
4.4 1 Applicable Receptacle and Cable Specifications 5	8
4.4.2 Connector 3CN Layout and Connection 6	0
4 4.2 Connector 3CN Layout and Connection (Cont'd) 6	2
5 DISPLAY/MONITOR FUNCTIONS	3
5 1 DISPLAY 6	3
5 2 MONITOR FUNCTION OF SERVOPACK TY PE CACR-HR[]]]AAB AND TY PE CACR-HR[]]]AB	54
5.2.1 Servopack Type CACR-HREEAAB 6	
5 2 2 Servopack Type CACR-HR[[]]AB6	
6 OPERATION	
6 1 COMMAND INPUT 6	55
6.2 CONNECTION WITH MOTIONPACK ··· ······ 6	55
6.2.1 Type HR[]]AAB 6	55
6 2 2 Type HR[]]]AB	
6.3 CONFIGURATION OF I/O CIRCUIT · · · · · · · · · · · · · · · · · · ·	57
6 3 1 Input Circuit 6	67
6.3 2 Output Circuit 6	67
6 3 3 Absolute Encoder	67
6 4 SETTING OF AXIS ADDRESS 6	
6 5 SETTING OF MOTOR CODE 6	
6 6 NOISE TREATMENT ······· 7	
6.7 NOISE TREATMENT (Cont'd) ····· 7	
6.7.1 Protection of Power Supply Line 7	
7 INSTALLATION AND WIRING	
7.1 RECEIVING 7	
7.2 INSTALLATION	
7 2 1 Servomotor	

- 5 -

CONTENTS (Cont'd)

Page

7 2 1 Servomotor (Cont'd) · · · · · · · · · · · · · · · · · · 76
7.2.2 Servopack 77
7 3 WIRING
7 3 1 Rated Current and Wire Sizes
7 4 WIRING PRECAUTIONS 78
8 PERIPHERAL DEVICES 81
8.1 COMBINATION OF PERIPHERAL DEVICES ········· 81
8 2 BRAKE POWER SUPPLY ······ · · · · · · · · · · · · · · ·

9	DIMENSIONS ······	37
9.1	AC SERVOMOTOR WITH ABSOLUTE ENCODER ··· · ····· ··· ··· ··· ··· ··· ··· ·	37
92	AC SERVOMOTOR WITH INCREMENTAL ENCODER ······ ··· ··· ··· ··· ··· ··· ··· ··)3
93	SERVOPACK · · · · · · · · · · · · · · · · · · ·	13
9.3	1 Rack-mounted Type CACR-IIR[[]]AAB[[]] · ·····1]	13
93	2 Base-mounted Type CACR-HR[]]AB ···· ··· ·· ·11	15

Page

INDEX

Section No Page

Section No. Page

Α	
Absolute Encoder	
AC SERVOMOTOR WITH ABSOLUTE ENCODER	
AC SERVOMOTOR WITH INCREMENTAL ENCODER	
Allowable Cyclic Operating Frequency	
Allowable Radial Load and Thrust Load $\cdots \cdot 2.2.2$ $\cdots \cdots 31$	
Applicable Receptacle and Cable Specifications ······58	
Applicable Receptacle Specifications	

Base-mounted Type CACR-HR[[1]]AB······· 9.3.2······ 115			
BRAKE POWER SUPPLY82			

С

COMBINATION OF AC SERVOPACK AND SERVOMOTOR ···································
COMBINATION OF PERIPHERAL DEVICES
COMMAND INPUT
CONFIGURATION OF I/O CIRCUIT ········ 6.3 ········ 67
Connection between Servopack Type HR[[]]AAB and Motionpack-10
Connection between Servopack Type HR[]]]AB and Motionpack-10
Connection between Servopack Type IIR[[]]AB and Motionpack-120
Connection between Servopack Type HR[]]]AB and Motionpack-120 ····· ···4.1 4 ··· ···· 54
CONNECTION WITH MOTIONPACK
CONNECTOR 2CN (FOR I/O SIGNAL) · ······4 3 · · · ······55
Connector 2CN I/O Signals and How to Use $\cdot43.3\cdots\cdots57$
Connector 2CN Layout and Connection4 3 2
CONNECTOR 3CN (FOR ENCODER)
Connector 3CN Layout and Connection 4.4.2
Connector 3CN Layout and Connection (Cont'd)······62
Connector Specifications

D	

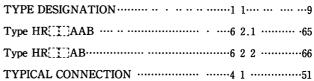
G

Input Cırcuit 6.3.167
INSTALLATION
INTERNAL BLOCK DIAGRAM (Figs 31, 3.2, 33)

List of S:andard Combination	·····2	3.2	
Load Inertia (JL)	3	4.2	48

Μ

MAIN CIRCUIT TERMINAL NAMES AND OUTLINE ····································
MECHANICAL CHARACTERISTICS ······ 2 2 ·· ···· ·31
Mechanical Specifications ·· ·································
Mechanical Strength
Minus Load
MONITOR FUNCTION OF SERVOPACK TYPE CACR-HR[]]]AAB AND TYPE CACR-IIR[]]AB 64
M Series $\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots 2 1 1 \cdots \cdots \cdots 15$


NOISE TREATMENT ·· ·····	·······6 6 ··· ····70
NOISE TREATMENT (Cont'd) ······	6.7

INDEX (Cont'd)

Section No. Page

0	
Output Circuit	7
Ρ	

POWER LOSS50
PRECAUTIONS FOR APPLICATION
Protection of Power Supply Line6.7 174
PROTECTIVE CIRCUIT ····································
P Series

1	
V	

Т

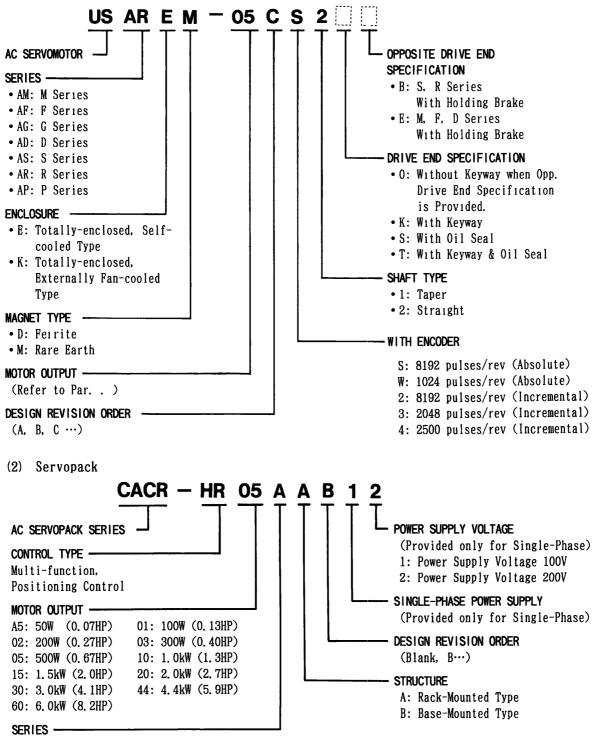
Vibration Class		2.2	732
Vibration Resista	ance		;32

W

WIRING	•••••	7	3	•• •••••	78
WIRING I	PRECAUTIONS	7.	4		78

R

Rack-mounted TypeCACR-HR[[]]AAB[[]]9 3 1113
Rated Current and Wire Sizes
RATINGS AND SPECIFICATIONS ···· ······2.1 ······15
RATINGS AND SPECIFICATIONS
RECEIVING
RECEPTACLES
Rotating Direction
R Series (For 100V)2 1.727
R Series (For 200V)21 625



Servomotor
Servomotor (Cont'd)
Servopack
SERVOPACK
Servopack Type CACR-HRA5AAB1[]]to -HR05 AAB1[]]3.2.143
Servopack Type CACR-HREIIAAB
Servopack Type CACR-HR10AAB, -HR15AAB ·············3.2.2 ······44
Servopack Type CACR-HR[[]]AB ·······3 2 3 ······45
Servopack Type CACR-HR[[1]]AB ······5.2.2 ······64
SETTING OF AXIS ADDRESS
SETTING OF MOTOR CODE
Shock Resistance
S Series ·· ····· 2 1 5 ······23

TYPE DESIGNATION AND CONFIGURATION

1.1 TYPE DESIGNATION

(1) Servomotor

For Motionpack -10, -120

1.2 COMBINATION OF AC SERVOPACK AND SERVOMOTOR

C	onfiguration	. Main Circuit Voltage		Rack-m	ounted Type.	Single-phas	e 200VAC		Rack-mount	ted Type, 3-	phase 200VAC	
_	Ту	pe CACR-HR	A5AAB12	01AAB12	02AAB12	03	AAB12	05AAB12	10	DAAB	15AAB	
	Type USAMED-		_	_		03	B[] 1	† <u> </u>	06B [_] 1	09B [] 1	12B []] 1	
	Applicable Servomotor	Output kW HP		_	_		0304	-	06 08	09 12	1 2 1 6	
M Se		Speed r/min			_	Rating 10	00/Max 2000	-	Ratı	ng 1000/Max	x 2000	
Series	Continuous	Output Current Arms			_		3 0	-	58	76	11 7	
	Max Output	Current Arms	_		_		7 3	1	13 9	16 6	28 0	
	Allowable JL(=GD ² 1/4)	kg • cm² 1b•1n•S²×10 ⁻³		_	-		75 30	-	121 5 183 5 107 5 162 5		334 296	
		Type USAFED-	_	_	_	020 [] 1	030 [] 1	050 [] 1	090	[]]	130 [.] 2	
	Applicable Servomotor	Output kW HP		_	-	0 15 0 2	0304	0 45 0 6	0	85 1	1 3 1 7	
F Series		Speed r/min				Rati	Rating 1500/Max 2500		Rating 1500/Max 2500			
'les	Continuous Output Current Arms		_	_	—	30	30	38	6	2	97	
_	Max Output Current Arms		_	—	_	8 5	85	11 0	17 0		27 6	
	Allowable J:(=GD ² :/4)	kg•cm² 1b•1n•S²×10⁻;		—	-	65 575	10 9	67 5 60		1575	183 5 162 5	
	Applicable Servomotor	Type USAGED-		_	_	02A 🛄 1	03A [_] 1	05A [_]1	09A [_] 1	13A [] 2	
		Output kW HP	-	_	_	0 15 0 2	03 04	045 06	0 8		1 3 1 7	
G Series		Speed r/min		_	—	Rati	ng 1500/Max	3000	Rating 1500/Max 3000		3000	
.1es	Continuous	Output Current Arms			—	30	30	38	7	6	11 7	
	Max Output	Current Arms				85	8 5	11 0	17	0	28 0	
	Allowable J _L (=GD ² ,/4)	kg • cm² 1b•1n•S²×10 ⁻³		_		65 575	10 9	67 5 60	121 5 107 5		183 5 162 5	
		Type USADED-	-	_		_	_	05E (_]			10E [_]	
	Applicable Servomotor	Output kW HP	_	_	_	_	-	05 067			1 0 1 34	
D Se		Speed r/min	-	_			-	Rating2000 Max 2500			Rating2000 Max 2500	
Series	Continuous (Output Current Arms	_	-	-	_	-	35			79	
	Max Output (Current Arms	-		-		-	10 6			25 2	
	Allowable J _L (=GD ² _L /4)	kg•cm² 1b•1n•S²×10⁻³	_	_	_		-	105 91			160 143	

Table 1.1 Rack-mounted Type Servopack (200 VAC)

Co	nfiguration,	Main Circuit Voltage		Rack-mo	unted Type.	Single-phase 200VAC		Rack-mounted Type 3-p	hase 200VAC
	Тур	e CACR-HR	A5AAB12	01AAB12	02AAB12	03AAB12	05AAB12	10AAB	15AAB
		Type USASEM-			02A 门 2	03A [] 2	05A 门 2	08A [] 2	15A []] 2
	Applıcable Servomotor	Output kW HP	_	_	0 154 0 2	0 303 0 4	0 462 0 6	0 771 1 0	154 21
R Se		Speed r/min	_	—		Rating 3000/Wax 4000		Rating 3000/Max	4000
Series	Continuous	Output Current Arms	_	-	21	3 0	4 2	5 3	10 4
	Max Output	Current Arms			60	8 5	11 0	15 6	28 0
	Aliowable J _L (=GD ² L/4)	kg • cm² 02•1n•S²×10 ^{−3}	_	_	0 65 0 55	2 55 2 25	3 75 3 35	14 25 12 65	16 5 14 4
		Type USAREM-	A5CS	01CS	02C S	03CS	050\$	07CS	
	Applicable Servomotor	Output W HP	50 0 07	100 0 13	200 0 27	300 0 40	500 0 67	700 0 94	—
S Se		Speed r/min			Rating 300	0/Max 4500		Rating 3000/Max 4500	
Series	Continuous Output Current Arms		0 71	1 0	2 0	2 7	3 6	5 7	
	Max Output	Current Arms	21	28	57	7 8	10 6	16 3	
	Allowable J_(=GD ² L/4)	kg•cm² 1b•ın•S²×10⁻∛	0 775 10 8	1 25 17 8	5 075 71 8	7 65 109	27 2 386	37 2 528	
		Type USAPEM-	_	01CW	02CW	03CW	05CW	07CW	
	Applicable Servomotor	Output W HP	_	100 0 13	200 0 27	300 0 40	500 0 67	700 0 94	—
P Sei		Speed r/min	—		Rati	ng 3000/Max 4500	d	Rating 3000/Max 4500	_
Series	Continuous	Output Current Arms		1 0	20	2 7	36	5 7	_
	Max Output	Current Arms	_	28	57	7 8	10 6	16 3	_
	Allowable J ₁ (=GD ² 1/4)	kg • cm² 0Z•ın•S²×10⁻³	_	1 95 27 75	32 4515	4 9 69 5	23 9 339	32 85 465	—

Table 1.1 Rack-mounted Type Servopack (200 VAC) (Cont'd)

Table 1.2 Rack-mounted Type Servopack (Single-phase 100 VAC)

Co	nfiguration,	Main Circuit Voltage		Rack-moun	ted Type. Single phase	100VAC	
	Тур	e CACR-HR	A5AAB11	O1AAB11	02AAB11	03A4B11	O5AAB11
R Ser		Type USAREM-	A5DS	01DS	02DS	O3DS	05 DS
	Applicable Servomotor	Output W HP	50 0 07	100 0 13	200 0 27	300 0 40	500 0 67
		Speed r/min			Rating 3000/Max 4000		
	Continuous Output Current Arms		1 2	17	29	36	5 5
	Max Output	Current Arms	36	5 0	8 5	10 6	16 3
	Allowable J _L (=GD ² ,/4)	kg•cm² 0Z•in•S²×10 ⁻³	0 775 10 8	1 25 17 8	5 075 71 8	7 65 109	27 2 386

No. of Pulses	Incr	emental En	Absolute Encoder		
Servomotor	2048	2500	8192	1024	8192
M Series	0	—	Ø	0	0
F Series	0		0	0	Ô
G Series	0	_	Ø	0	Ø
D Series	Ô	_	0	Ø	0
S Series	0	0	—	0	0
R Series		_			Ô
P Series				Ô	

Combination of Servomotor and encoder is as shown below:

© Standard

 \bigcirc Semi-standard

Note: When exceeding allowable J₁ during use, be sure to follow the instructions in Par. 3.4.2 "Load Inertia".

Co	nfiguration.	Main Circuit Voltage		Base-mo	unted Type. S	3-phase 200V	AC				
	Тур	e CACR-HR	O3AB	05AB	10/	\B	15AB	20AB	30AB	44AB	60AB*
		Type USAMED-	03B 🛄 1	_	06B [_] 1	09B 门 2	12B []] 2	20B [.] 2	30B 🔝 2	44B 门 2	USAMKD -60b [] 2
	Applıcable Servomotor	Output kW HP	03 04	_	06 08	09 12	1 2 1 6	20 27	30 41	44 59	60 82
N Se		Speed r/min	Rating 100	0/Max 2000	—		Rating 100	0/Max 2000		Rating 100	0/Max 1500
Series	Continuous	Output Current Arms	30	—	58	76	11 7	18 8	26 0	33 0	45 0
	Max Output	Current Arms	73	—	13 9	16 6	28 0	42 0	56 5	70 0	80 6
	Allowable J _L (=GD ² 1/4)	kg • cm² 1b•ın•S²×10⁻³	67 5 60	—	121 5 107 5	183 5 162 5	334 296	550 486	715 633 5	1200 1063	1200 1063
		Type USAFED-	020 [.] 1	03C [_] 1	05C [_] 1	09C [_] 1	130 []] 2	200 [_] 2	30C [_] 2	44C [_] 2	_
	Applicable Servomotor	Output kW HP	0 15 0 2	03 04	045 06	085 11	13 17	18 24	29 39	44 59	
F S		Speed r/min				Rating 150	0/Max 2500				
Series	Continuous	Output Current Arms	30	30	38	6 2	97	15 0	20 0	33 0	_
	Max Output	Current Arms	85	85	11 0	17 0	27 6	42 0	56 5	77 0	
	Allowable J:(=GD²:/4)	kg•cm² 1b•ın•S²×10⁻³	65 575	10 9	67 5 60	121 5 107 5	183 5 162 5	334 296	550 486	715 633 5	
_		Type USAGED-	02A [_] 1	03A 门 1	05A [] 1	09A []] 1	13A [_] 2	20A 门 2	30A [_] 2	44A 🛄 2	_
	Applicable Servomotor	Output kW HP	0 15 0 2	03 04	045 06	085 12	13 18	18 24	29 39	44 59	_
S J	Speed r/min		Rating 1500/Max 3000							—	
Series	Continuous	Output Current Arms	30	30	38	76	11 7	19 0	26 0	33 0	_
	Max Output	Current Arms	85	85	11 0	17 0	28 0	42 0	56 5	70 0	_
	Allowable J _L (=GD ² L/4)	kg • cm ² 1b•ιn•S ² ×10 ⁻³	65 575	10 9	67 5 60	121 5 107 5	183 5 162 5	334 296	550 486	715 633 5	
		Type USADED-		_	05E 门		10E [_]	15E [_]	22E [_]	37E 门	
	Applicable Servomotor	Output k₩ HP	-		05 067	_	1 0 1 3	15 20	22 29	37 50	_
D S		Speed r/min	-	_	Rating2000 Max 2500	_		Rating 200	00/Max 2500		
Series	Continuous	Output Current Arms		_	35	_	79	12 6	16 6	23 3	
	Max Output	Current Arms	-	_	10 6	-	25 2	40 7	54 0	77 0	-
	Allowable J.(=GD ² ./4)	kg • cm ² 1b•1n•S ² ×10 ⁻³	-	_	105 91		160 143	310 274 5	415 367 5	740 655	-
		Type USASEM-	02A []] 2	03A []] 2	05A 🛄 2	08A 🛄 2	15A [_] 2	—	30A [.] 2		_
	Applicable Servomotor	Output kW HP	0 154 0 2	0 308 0 4	0 462 0 6	0771 10	1 54 2 1	-	3 08 4 1		_
s s		Speed r/min		Rati	ing 3000/Max	4000			Rating3000 Max 4000	_	_
Series	Continuous	Output Current Arms	2 1	3 0	4 2	53	10 4	_	19 9	_	_
	Max Output	Current Arms	60	8 5	11 0	15 6	28 0	-	56 5	_	
	Allowable J. (=GD ² ,/4)	$kg \cdot cm^{2} \\ 02 \cdot 1n \cdot S^{2} \times 10^{-3}$	0 65 0 55	2 55 2 25	3 75 3 35	14 25 12 65	16 5 14 4	_	28 7 25 45	_	_

Table 13 Base-mounted Type Servopack (3-phase 200 VAC)

*To be released shortly

2 RATINGS AND SPECIFICATIONS OF AC SERVOMOTOR

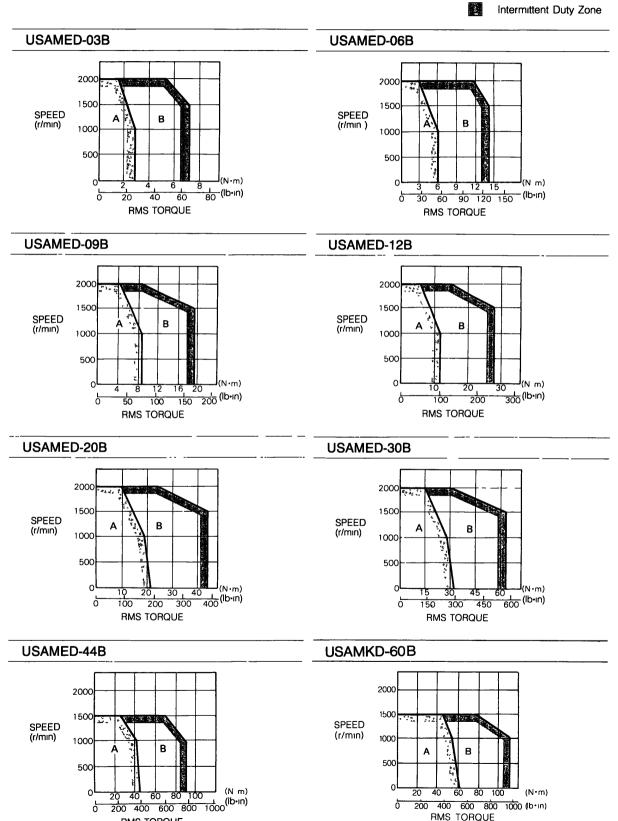
2.1 RATINGS AND SPECIFICATIONS

2.1.1 M Series

```
(1) Ratings
Time Rating: Continuous
                                                  Ambient Humidity: 20% to 80%
Insulation: Class F
                                                   (non-condensing)
Isolation Voltage: 1500 VAC, one minute
                                                  Vibration: 15µm or below
Insulation Resistance: 500 VDC, 10M\Omega or more
                                                  Finish in Munsell Notation: N1.5
Enclosure: Totally-enclosed, self-cooled for
                                                 Excitation: Permanent magnet
           03 to 44 and externally fan-cooled
                                                 Mounting: Flange mounted
           for 60; Equivalent to IP55
                                                 Drive Method: Direct drive
Ambient Temperature: 0 to + 40°C
```

- (2) Combination with encoder
- Standard

USAMELED - ELEE BS ELE : With absolute encoder (8192 pulses/rev) USAMELED - ELEE B2 ELE : With incremental encoder (8192 pulses/rev) • Semi-Standard USAMELED - ELEE BW ELE : With absolute encoder (1024 pulses/rev)


USAMEDD - EDED B3 ED : With incremental encoder (2048 pulses/rev)

Motor Type USAMED- Item	03B (1	06B (_] 1	09B′'2	12B (_` 2	20B [_] 2	30B (_] 2	44B (.) 2	USAMKD- 60b (_] 2
Rated Output* kW (HP)	03 (04)	06 (08)	09 (12)	12 (16,	20 (27)	30 (40)	44 (59)	6.0 (82)
Rated Torque* N•m (1b•1n)	2 84 (25)	5 68 (50)	8 63 (76)	11 5 (102)	19 1 (169)	28 4 (252)	41 9 (372)	572 (507)
Continuous Max Torque .N•m (1b•in)	2 94 (26)	588 (52)	8 82 (78)	11 8 (104)	21 6 (191)	32 3 (286)	46 1 (408)	62 9 (557)
Instantaneous N•m Peak Torque* (1b•1n)	7 17 (63)	14 1 (125)	19 3 (171)	28 0 (248`	44 0 (390)	63 7 (564)	91 1 (807)	106 (938)
Rated Current* A	30	58	76	11 7	18 8	26	33	45
Rated Speed* r/min				10	00			·
Instantaneous Max Speed* r/min	2000						1500	
Torque Constant N·m/A (1b·1n/A)	1 01 (8 9)	1 04 (9 2)	1 21 (10 7)	1 02 (9 0)	1 07 (9.5)	1 16 (10 2)	1 33 (11 8)	1 33 (11 8)
Moment of Motor Kg·m ² ×10 ⁻⁴ Inertia	13 5	24 3	36. 7	58	110	143	240	240
J_{M} (=GD _M ² /4) (1b·1n·S ² ×10 ⁻³)	(12 0)	(21.5)	(32 5)	(51 2)	(972)	(126 7)	(212 6)	(212 6)
Power Rate* kW/s	60	13 3	20 3	22 7	33 2	57 0	74 0	138
Inertia Time Constant ms	12 8	63	44	60	52	35	36	36
Inductive Time Constant ms	27	51	65	10 4	12 9	15 3	16 2	16 2

Table 2.1 Ratings and Specifications of M Series AC Servomotors

* Typical value at armature winding temperature of 20°C. in combination with Servopack

RMS TORQUE

2.1.2 F Series

(1) Ratings Time Rating: Continuous Ambient Humidity: 20% to 80% Insulation: Class F (non-condensing) Isolation Voltage: 1500 VAC, one minute Vibration: $15 \mu m$ or below Insulation Resistance: 500 VDC, $10M\Omega$ or more Finish in Munsell Notation: N1.5 Enclosure: Totally-enclosed, self-cooled Excitation: Permanent magnet Equivalent to IP55 Mounting: Flange mounted (Shaft penetrating section excluded) Drive Method: Direct drive Ambient Temperature: 0 to + 40°C

(2) Combination with encoder

• Standard

```
USAFED- [][] CS [] : With absolute encoder (8192 pulses/rev)
 USAFED- EIEE C2 EE : With incremental encoder (8192 pulses/rev)
• Semi-Standard
```

USAFED- []][] CW [] : With absolute encoder (1024 pulses/rev) USAFED- []][] C3 [] : With incremental encoder (2048 pulses/rev)

Motor	Type USAFED-								
Item		02C []] 1	03C []] 1	05C []] 1	09C []] 1	13C []] 2	200 []] 2	300 []] 2	440 []] 2
Rated Output*	k₩ (HP)	0. 15 (0. 2)	03 (0.4)	0 45 (0.6)	0 85 (1 1)	1.3 (1.7)	1 8 (2,4)	29 (3.9)	4.4 (59)
Rated Torque*	N•m (1b•in)	0.98 (8.7)	1.96 (17)	2.84 (25)	5, 39 (48)	8. 34 (74)	11 5 (102)	18.6 (165)	28.4 (252)
Continuous Max Torque*	N•m (1b•1n)	1.08 (10)	2.16 (19)	2 94 (26)	5 88 (52)	8 83 (78)	11 8 (104)	22 6 (200)	37 3 (330)
Instantaneous Peak Torque*	N•m (1b•in)	2 91 (26)	582 (52)	8.92 (79)	15.2 (135)	24 7 (219)	34 0 (301)	54 1 (479)	762 (675)
Rated Current*	A	3. 0	3. 0	3. 8	62	9.7	15	20	30
Rated Speed*	r/min				15	600			
Instantaneous Max.	Speed* r/min	2500							
Torque Constant	N•m/A (1b•1n/A)	0. 36 (3. 2)	0.72 (63)	0.8 (7.1)	0. 92 (8. 2)	0.92 (82)	0.82 (7.3)	0.98 (87)	1 02 (9.0)
Inertia	(g•m² ×10 ⁻⁴	1. 30	2.06	13. 5	24. 3	36.7	58	110	143
$J_{M} (= GD^{2}/4) \qquad (1b \cdot i)$	$n \cdot S^2 \times 10^{-3}$)	(1.2)	(1.8)	(12.0)	(21.5)	(32.5)	(51.2)	(97.2)	(126.7)
Power Rate*	kW/s	7.4	18.3	60	12	18 9	22 7	31 5	57.0
Inertia Time Consta	int ms	3. 9	2.5	10.9	6.0	4.4	5.9	5. 2	3.7
Inductive Time Cons	stant ms	3. 4	43	3. 2	52	6 1	10 4	13 0	15 2

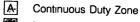
Table 2.2 Ratings and Specifications of F Series AC Servomotors

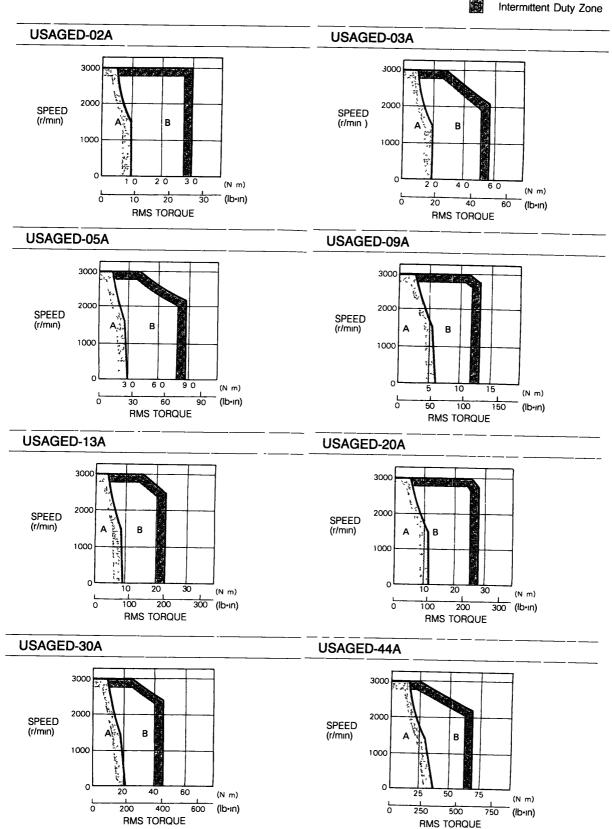
* Typical value at armature winding temperature of 20°C. in combination with Servopack

Typical at 20°C (Armature Winding Temp) A Continuous Duty Zone B Intermittent Duty Zone **USAFED-02C USAFED-03C** 2500 2500 Contract of the second 1. 1.8 815 7 2000 2000 1500 SPEED SPEED (r/min) 1500 А В (r/min) Α P 1000 1000 500 500 0 0 (N m) (N m) 60 (lb•in) 6 ŏ 10 20 30 (lb-in) ō 20 40 RMS TORQUE RMS TORQUE **USAFED-05C USAFED-09C** 2500 2500 2000 2000 SPEED 1500 (r/min) 1000 SPEED (r/min) 1500 A Ŕ Α B 1000 1000 500 500 0 0 10 (N·m) 10 (N m) 5 ò 20 40 60 150 (lb•in) 80 (lb•in) 50 100 RMS TORQUE RMS TORQUE **USAFED-13C USAFED-20C** 2500 2500 2000 2000 SPEED 1500 SPEED (r/min) 1500 (r/min) Α в 1000 1000 500 500 0 0 10 15 20 25 (N•m) 40 , (Nm) ď 50 100 150 200 250 300 400 (lb-in) ō (lb•ın) 100 200 RMS TORQUE RMS TORQUE **USAFED-30C USAFED-44C** 2500 2500 2000 2000 SPEED 1500 1500 SPEED (r/min) Α В Α В (r/min) 1000 1000 500 500 0 0 60 (N m) 40 60 80 20 (N•m) 600 (lb-in) ō 0 400 600 800 (lb·in) 400 200 200 RMS TORQUE RMS TORQUE

- 18 -

```
2.1.3 G Series
(1) Ratings
                                                  Ambient Humidity: 20% to 80%
Time Rating: Continuous
Insulation: Class F
                                                   (non-condensing)
Isolation Voltage: 1500 VAC, one minute
                                                  Vibration: 15 \mu m or below
                                                  Finish in Munsell Notation: N1.5
Insulation Resistance: 500 VDC, 10M\Omega or more
                                                  Excitation: Permanent magnet
Enclosure: Totally-enclosed, self-cooled
                                                  Mounting: Flange mounted
Ambient Temperature: 0 to + 40°C
                                                  Drive Method: Direct drive
(2) Combination with encoder
• Standard
  USAGED- []][] AS [] : With absolute encoder (8192 pulses/rev)
  USAGED- [][] A2 [] : With incremental encoder (8192 pulses/rev)
• Semi-Standard
  USAGED- []] AW [] : With absolute encoder (1024 pulses/rev)
```


	2.0	natings ar							
Motor Type USA Item	GED-	02A [] 1	03A []] 1	05A []] 1	09A []] 1	13A []] 2	20A []] 2	30A [.] 2	44A []] 2
Rated Output*	kW (HP)	0 15 (0.2)	0.3 (0.4)	0.45 (06)	085 (1.1)	1.3 (1.7)	18 (24)	2.9 (3.9)	4.4 (5.9)
Rated Torque* (1b	•n •1n)	0.98 (87)	196 (17)	2.84 (25)	5, 39 (48)	8. 34 (74)	11.5 (102)	18.6 (165)	28. 4 (252)
Continuous Max. Torque* (16	N•m •1n)	1.08 (10)	2.16 (19)	2. 94 (26)	5.83 (52)	8. 83 (78)	11.8 (104)	22.6 (200)	37.3 (330)
	N•m •in)	2. 91 (26)	5.83 (52)	8 92 (79)	13.3 (118)	23 3 (207)	28 0 (248)	45. 1 (339)	66.2 (587)
Rated Current*	A	3.0	30	3.8	7.6	11.7	19.0	26.0	33 0
Rated Speed* r/r	nın		J		15	500			
Max. Speed* r/r	nin				30	000			
Torque Constant (1b•1)	n/A n/A)	0. 36 (3. 2)	0.72 (6.3)	0.80 (7.1)	0.80 (7.1)	0. 83 (7. 4)	0.67 (5.9)	0.80 (7.1)	0.95 (8.4)
Moment of Motor $kg \cdot m^2 \times 10^{10}$ Inertia $J_{M} (= GD_{M}^2/4)$ (1b·1n·s ² ×10)		1.3 (12)	2.06 (18)	13 5 (12.0)	24. 3 (21. 5)	36 7 (32, 5)	58 (51, 2)	110 (97.2)	143 (126 7)
Power Rate* k	W/s	7.4	18. 3	6.0	12. 0	18 9	22. 7	36.5	57 0
Inertia Time Constant	ms	4.5	2.5	10. 9	6.1	4.3	5.8	5. 2	3. 4
Inductive Time Constant	ms	34	4.3	32	5. 2	6.7	10.4	13 2	15. 9


Table 2.3 Ratings and Specifications of G Series AC Servomotors

USAGED- [][] A3 [] : With incremental encoder (2048 pulses/rev)

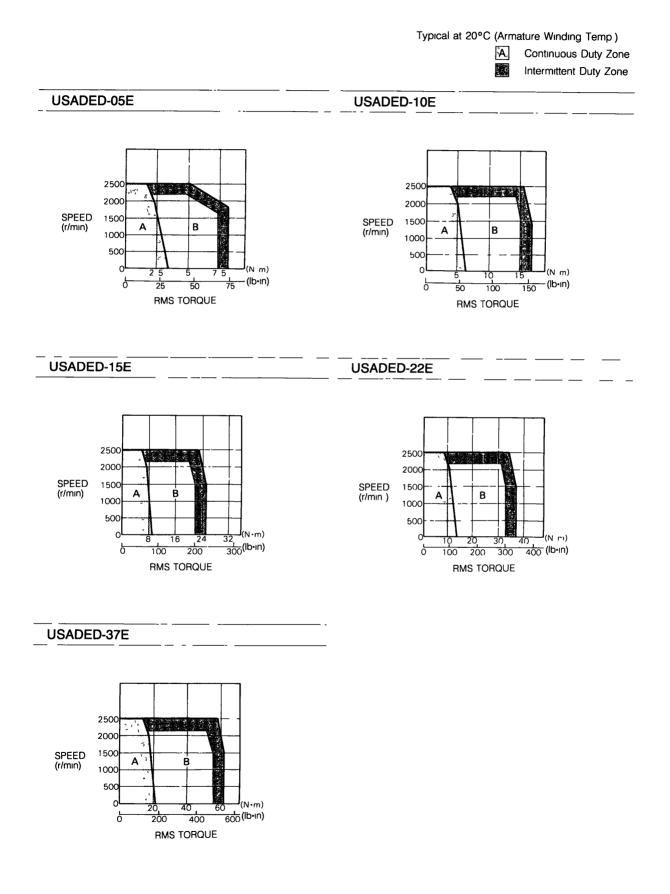
* Typical value at armature winding temperature of 20°C. in combination with Servopack

Typical at 20°C (Armature Winding Temp)

2.1.4 D Series

(1) Ratings Time Rating: Continuous Vibration: $15 \mu m$ or below Insulation: Class F Finish in Munsell Notation: N1.5 Isolation Voltage: 1500 VAC, one minute Excitation: Permanent magnet Insulation Resistance: 500 VDC, $10M\Omega$ or more Mounting: Flange mounted Enclosure: Totally-enclosed, self-cooled Drive Method: Direct drive Ambient Temperature: 0 to + 40°C Holding Brake Provided Ambient Humidity: 20% to 80% (non-condensing) (2) Combination with encoder Standard USADED- []][] EW : With absolute encoder (1024 pulses/rev) USADED- []][] E3 : With incremental encoder (2048 pulses/rev) • Semi-Standard

USADED- []][] ES : With absolute encoder (8192 pulses/rev)


USADED- []][] E2 : With incremental encoder (8192 pulses/rev)

Motor Type USADED-05E []] 10E []] 15E []] 22E 门 37E []] Item k₩ 0.5 1.0 1.5 2.2 3.7 Rated Output* (HP) (0 67) (1.3)(2, 0)(2 9)(5 0)4.80 N•m 2.35 7 16 10.5 17 7 **Rated Torque*** (1b•in) (21) (43) (63) (93) (156)N•m 3.43 6 37 8.82 13.7 21.6 Continuous Max Torque* (1b•1n) (56) (78) (122)(191) (30) 8.24 25.1 36.8 61.8 Instantaneous N•m 16.9 Peak Torque* (1b•in) (73) (222)(326) (547) (149) **Rated Current*** A 3.5 79 12.6 16.6 23.3 2000 Rated Speed* r/min Instantaneous Peak Speed* r/min 2500 0.82 N•m/A 0.83 0 69 0 64 0 71 **Torque Constant** (7.29) $(1b \cdot n/1)$ (7.38)(6, 07)(5.64)(6, 25)Moment of Motor $kg \cdot m^2 \times 10^{-4}$ 21,13* 32,24* 62.59* 83,80 + 148,145 * Inertia J_{M} (=GD²/4) $(1b \cdot in \cdot s^2 \times 10^{-3})$ $(13 \ 2, 11 \ 3^{\dagger})$ (28.6, 21.5[†]) (54.7, 52.1) (73.8.71.1) (131, 128[†]) 2.7 7.3 8.2 13 21 k₩/s Power Rate* 4.4* 22 † 9.7* 8.6* 14* 6.2 18 7.8 7.1 4.3 Inertia Time Constant ms 11* 4.2† 6.8† 6.0† 5.9† Inductive Time Constant ۵S 4.4 6.9 9.4 11 15

Table 2.4 Ratings and Specifications of D Series AC Servomotors

* Typical value at armature winding temperature of 20°C, in combination with Servopack.

† Values show those of D series without holding brake.

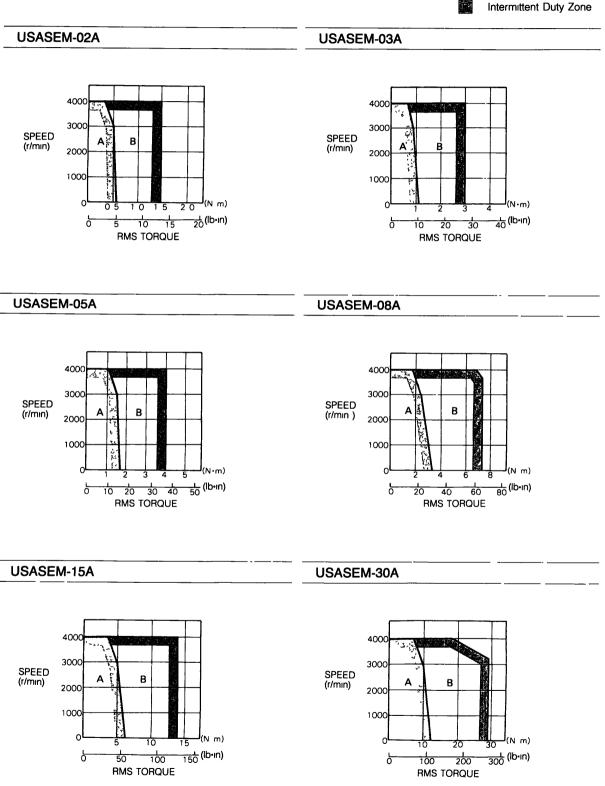
2.1.5 S Series (1) Ratings Time Rating: Continuous Ambient Humidity: 20% to 80% Insulation: Class B (Types USASEM-02A 😳 2, (non-condensing) -03A [] 2, -05A [] 2) Vibration: 15 μ m or below Class F (Types USASEM-08A []]1, Finish in Munsell Notation: N1.5 -15A []] 1, -30A []] 1) Excitation: Permanent magnet Isolation Voltage: 1500 VAC, one minute Mounting: Flange mounted Insulation Resistance: 500 VDC, $10M\Omega$ or more Drive Method: Direct drive Enclosure: Totally-enclosed, self-cooled Ambient Temperature: 0 to + 40°C (2) Combination with encoder • Standard USASEM- EBEB AS : With absolute encoder (8192 pulses/rev) USASEM- EXER A3 : With incremental encoder (2048 pulses/rev)

• Semi-Standard

USASEM- []]] AW : With absolute encoder (1024 pulses/rev)

USASEM- ENER A4 : With incremental encoder (2500 pulses/rev)

Motor Type USASEM- Item	02A []] 2	03A [] 2	05A 🖽 2	08A [] 1	15A []] 1	30A [⁻] 1	
Rated Output* W	154) (0.2)	308 (0,4)	462 (0 6)	771 (1.0)	1540 (21)	3080 (4 1)	
Rated Torque* N·m (1b·in		0.98 (8.7)	1. 47 (13)	2 45 (22)	4 90 (43)	9 80 (87)	
Continuous Max Torque* N•m (1b•in	0 57) (5 0)	1 18 (10)	1.67 (15)	3 33 (30)	6. 17 (55)	12.2 (108)	
Instantaneous Peak Torque* (1b·1n		2. 94 (26)	4. 02 (36)	7.35 (65)	13 7 (122)	29.0 (257)	
Rated Current* A	2.1	3.0	4.2	5.3	10.4	19.9	
Rated Speed* r/min		-	30)00			
Instantaneous Max Speed* r/min		4000					
Torque Constant N•m/A (1b•in/A		0 35 (3, 10)	0. 37 (3. 25)	0. 51 (4. 49)	0. 50 (4, 43)	0. 52 (4. 64)	
Moment of Motor Inertiakg·m²×10-4Ju(=GD²/4)(1b·1n·s²×10-3)	0.13 (0.11)	0. 51 (0. 45)	0.75 (0.67)	2. 85 (2. 53)	3. 3 (2. 88)	5. 74 (5. 09)	
Power Rate* kW/s	18.5	18.9	28.9	21	74	167	
Inertia Time Constant ms	1 8	22	1.8	1.9	0.7	0.4	
Inductive Time Constant ms	1.5	2.7	31	6.2	13	26	


Table 2.5 Ratings and Specifications of S Series AC Servomotors

* Typical value at armature winding temperature of 100°C. In combination with Servopack Other values at 20°C.

Typical at 100°C (Armature Winding Temp)

A Continuous Duty Zone

- 24 -

2.1.6 R Series (For 200V)

(1) Ratings Time Rating: Continuous Insulation: Class B Isolation Voltage: 1000 VAC, one minute Insulation Resistance: 500 VDC, $10M\Omega$ or more Enclosure: Totally-enclosed, self-cooled Ambient Temperature: 0 to $+40^{\circ}$ C Storage Temperature: -20 to $+60^{\circ}$ C

Ambient Humidity: 20% to 80% (non-condensing) Vibration: 15µm or below Finish in Munsell Notation: N1.5 Excitation: Permanent magnet Mounting: Flange mounted Drive Method: Direct drive

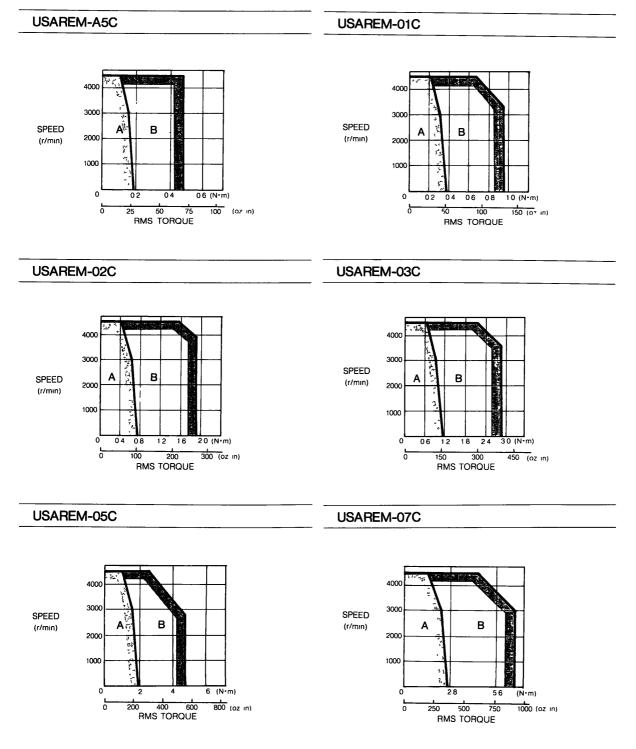
(2) Combination with encoder

• Standard

USAREM- []][] CS2 : With absolute encoder (8192 pulses/rev)

Moto Item	or Type USAREM-	A5C []] 2	010 []] 2	02C [] 2	030 []] 2	050 门 2	07C [] 2
Rated Output*	W (HP)	50 (0. 07)	100 (0. 13)	200 (0. 27)	300 (0. 40)	500 (0.67)	700 (0.93)
Rated Torque*	N•m (oz•1n)	0 159 (22.5)	0 318 (45)	0. 637 (90)	0.955 (135)	1. 59 (225)	2.23 (316)
Continuous Max. Torque*	N•m (oz•in)	0.19 (269)	0 382 (54.2)	0. 765 (108. 3)	1. 15 (162. 5)	1.90 (269.4)	2 67 (378)
Peak Torque*	N•m (oz•1n)	0.476 (675)	0. 955 (135)	1. 91 (270)	2.86 (405)	4.76 (675)	6.68 (948)
Rated Current*	A	0 71	1.0	2.0	2.7	3.6	5.7
Rated Speed*	r/min	3000					
Max. Speed*	r/min			45	00	· · · · · · · · · · · · · · · · · · ·	
Torque Constant	N•m/A (oz•1n/A)	0, 235 (33, 3)	0. 353 (50. 0)	0. 346 (49. 0)	0. 378 (53. 6)	0. 466 (66. 0)	0 426 (60.4)
Moment of Motor Inertia J _M (=GD ² /4) ((kg•cm² oz•in•s²×10⁻³)	0.076 (1.08)	0. 125 (1. 78)	0. 507 (7. 18)	0.766 (10.9)	2. 72 (38. 6)	3. 72 (52 8)
Power Rate*	kW/s	3. 30	8. 09	8.01	11.9	9. 26	13. 3
Inertia Time Constant	ms	4.4	3.4	2. 9	26	2. 8	2. 5
Inductive Time Constant	MS	1.3	1.6	4.1	4.5	9.4	10.0

Table 2.6 Ratings and Specifications of R Series AC Servomotors (For 200 V)


* Typical value at armature winding temperature of 75°C, in combination with Servopack. Other values at 20°C.

Typical at 20°C (Armature Winding Temp)

6

A Continuous Duty Zone Intermittent Duty Zone

Note : Values in the intermittent duty zone are typical values when Servopack power supply voltage is 200 VAC. When it is less than 200 VAC, output characteristics may be reduced even if the values are within in the allowable variation range.

2.1.7 R Series (For 100V)

(1) Ratings Time Rating: Continuous Insulation: Class B Isolation Voltage: 1000 VAC, one minute Insulation Resistance: 500 VDC, $10M\Omega$ or more Enclosure: Totally-enclosed, self-cooled Ambient Temperature: 0 to + 40° C Storage Temperature: -20 to + 60° C

Ambient Humidity: 20% to 80% (non-condensing) Vibration: 15µm or below Finish in Munsell Notation: N1.5 Excitation: Permanent magnet Mounting: Flange mounted Drive Method: Direct drive

(2) Combination with encoder

• Standard

USAREM- ETEE DS2 : With absolute encoder (8192 pulses/rev)

Motor T	ype USAREM-						
tem		A5D []] 2	01D []] 2	02D []] 2	03D []] 2	05D []] 2	
Rated Output*	W (HP)	50 (0.07)	100 (0.13)	200 (0. 27)	300 (0 40)	500 (0.67)	
Rated Torque*	N•m (oz•1n)	0.159 (225)	0. 318 (45)	0.637 (90)	0 955 (135)	1.59 (225)	
Continuous Max Torque*	N•m (oz•1n)	0 19 (26 9)	0.382 542)	0.765 (1083)	1.15 (162.5)	1 90 (269.4)	
Peak Torque*	N•m (oz•in)	0.476 (675)	0.955 (135)	1.91 (270)	2.86 (405)	4.76 (675)	
Rated Current*	A	1.2	1.7	29	36	5 5	
Rated Speed*	r/min	3000					
Max Speed*	r/mın			4000			
Torque Constant	N•m/A (oz•in/A)	0.136 (193)	0.198 (28-1)	0.235 (33.3)	0.284 (403)	0. 308 (43. 6)	
	kg•cm²	0. 076	0. 125	0 507	0. 766	2. 72	
Inertia J _M (=GD2/4) (oz•in	n•s²×10⁻³)	(1.08)	(1.78)	(7.18)	(10.9)	(38.6)	
Power Rate*	k₩/s	3. 30	8. 09	8. 01	11.9	9. 26	
Inertia Time Cons	tant ms	4.2	3. 2	3.0	2.5	2. 7	
Inductive Time Con	nstant ms	1.4	1.7	4.0	4.6	9.6	

Table 2.7 Ratings and Specifications of R Series AC Servomotors (For 100 V)

★ Typical value at armature winding temperature of 75°C, in combination with Servopack Other values at 20°C

3000

1000

0

5

Α

2

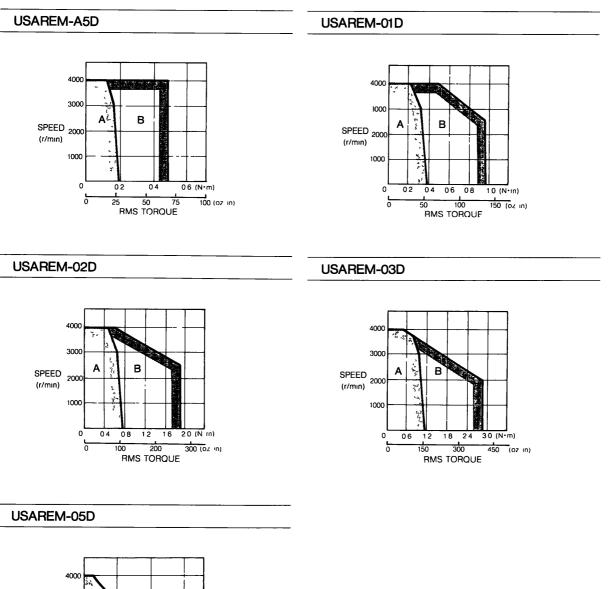
250

4

750

500

RMS TORQUE


6 (N m)

1000 (oz in)

SPEED (r/min) 2000 Typical at 20°C (Armature Winding Temp)

Continuous Duty ZoneIntermittent Duty Zone

Note: Values in the intermittent duty zone are typical values when Servopack power supply voltage is 100 VAC. When it is less than 100 VAC, output characteristics may be reduced even if the values are within in the allowable variation range.

2.1.8 P Series

(1) Ratings Time Rating: Continuous Insulation: Class B Isolation Voltage: 1000 VAC, one minute Insulation Resistance: 500 VDC, $10M\Omega$ or more Enclosure: Totally-enclosed, self-cooled Ambient Temperature: 0 to + 40°C Storage Temperature: -20 to + 60°C

Ambient Humidity: 20% to 80% (non-condensing) Vibration: 15μm or below Finish in Munsell Notation: N1.5 Excitation: Permanent magnet Mounting: Flange mounted Drive Method: Direct drive

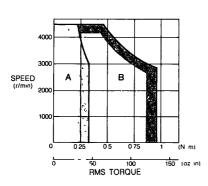
(2) Combination with encoder

• Standard

USAPEM- EEEE CW2 : With absolute encoder (1024 pulses/rev)

Motor T Item	Sype USAPEM-	01C [] 2	02C []] 2	03C []] 2	050 []] 2	07C []] 2
Rated Output*	W (HP)	100 (0. 13)	200 (0. 27)	300 (0. 40)	500 (0.67)	750 (1.0)
Rated Torque*	N∘m (oz∘in)	0. 32 (45)	0.64 (90)	0.95 (135)	1 59 (225)	2 39 (339)
Continuous Max Torque*	N•m (oz∙in)	0 32 (45)	0 64 (90)	0 95 (135)	1 59 (225)	2 39 (339)
Peak Torque*	N•m (oz •in)	0.96 (136)	1.91 (270)	2.86 (405)	4. 76 (675)	7 06 (1000)
Rated Current*	Arms	1.0	2.0	2.7	3.6	5.7
Rated Speed*	r/min			3000		· · ·
Max Speed*	r/mın			4500		
Torque Constant	N•m∕A (oz•in/A)	0 35 (49.6)	0.34 (478)	0 37 (52.8)	0 51 (72.5)	0. 44 (62. 6)
Moment of Motor InertiaJ _M (=GD ² /4) (oz•i	kg•cm² n•s²×10⁻³)	0.39 (555)	0. 64 (9. 03)	0. 98 (13. 9)	4. 78 (67. 8)	6. 57 (93. 0)
Power Rate*	kW/s	2. 59	6. 37	9, 30	5. 27	8 71
Inertia Time Cons	tant ms	5. 3	28	22	4.9	3. 3
Inductive Time Co	nstant ms	4.7	5. 8	6.4	10.0	14.0

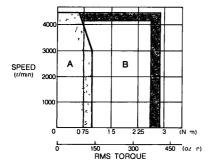
Table 2.8 Ratings and Specifications of P Series AC Servomotors

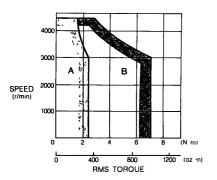

* Typical value at armature winding temperature of 75°C, in combination with Sevopack. Other values at 20°C.

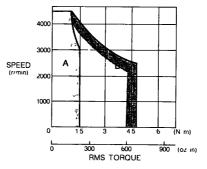
Typical at 20°C (Armature Winding Temp)

- Intermittent Duty Zone
- Note: Values in the intermittent duty zone are typical values when Servopack power supply voltage is 200 VAC. When it is less than 200 VAC, output characteristics may be reduced even if the values are with in the allowable variation range.

Type USAPEM-01C






Type USAPEM-03C

Type USAPEM-05C

Type USAPEM-07C

2.2 MECHANICAL CHARACTERISTICS

2.2.1 Mechanical Strength

AC servomotors can carry up to 300% (350% only for D series) of the rated momentary maximum torque at output shaft.

2.2.2 Allowable Radial Load and Thrust Load

Table 3.9 shows allowable loads according to AC servomotor types.

M Series			
Motor Type USAM []] D-	Allowable Radial Load* N(lb)	Allowable Thrust Load N(1b)	
O3B []] 1	100/110	00,000	
06B []] 1	490(110)	98(22) t	
09B []] 2	686(154)	343(77)	
12B []] 2			
20B []] 2	1470(330)	490(110)	
30B []] 2	-		
44B [] 2	1704(007)	F00/100	
60B []] 2	- 1764(397)	588(132)	
F Series			
Motor Type USAFED-	Allowable Radial Load* N(lb)	Allowable Thrust Load N(1b)	
020 []] 1	147(99)	40(11)	
03C []] 1	- 147(33)	49 ⁽ 11) †	
050 []] 1	490(110)	98(22) †	
09C []] 1			
130 []] 2	686(154)	343(77)	
200 []] 2			
300 [1] 2	1470(331)	490(110)	
44C []] 2	1470(331)	400(110)	
G Series			
Motor Type USAGED-	Allowable Radial Load* N(lb)	Allowable Thrust Load N(1b)	
02A []] 1	147(99)	10(11)	
03A []] 1	147(33)	49(11) t	
05A [] 1	490(110)	98(22) t	
09A []] 1			
13A []] 2	686(154)	343(77)	
20A []] 2			
30A []] 2	1470(001)	100(110)	
44A 🛄 2	1470(331)	49 0(110)	

Table 2.9 Allowable Radial Load and Thrust Load

Motor Type USADED-	Allowable Radial Load* N(lb)	Allowable Thrust Load N(1b)	
05E []]	000(154)	040.85.	
10E []]	686(154)	343(77)	
15E []]			
22E []]	1176(265)	490,110)	
37E []]			
S Series			
Motor Type USASEM-	Allowable Radıal Load [*] N(lb)	Allowable Thrust Load N'lb	
02A []]	78 4(18)	39 2(9)	
034 []]	245(55)	00/00)	
05A []]	245(55)	98(22)	
08A []]	392(88)	147/00	
15A []]	490(110)	147(33)	
30A []]	686(154)	196(44)	
R Series			
Motor Type USAR3M-	Allowable Radial Load* N(lb)	Allowable Thrust Load N(1b)	
A5 [_][] 2 01 [[][] 2	78 4(18)	39 2.9	
02 []][]2	245(55)	98(22)	
03 []][] 2 05 []][] 2 07 [][] 2	- 392(88)	147(33)	
P Series			
Motor Type USAPEM-	Allowable Radial Load* N(1b)	Allowable Thrust Load N(lb)	
01C [] 2	88 2(20)	39 2(9)	
020 []] 2	147(33)		
030 []] 2	196(44)	58 8(13)	
050 []] 2	343(77)	98(22)	
07C []] 2	441(99)	127 4(29)	

 Do not apply the exceeding load because motor can not be rotated

2.2.3 Mechanical Specifications

Accuracy(T. I. R.)*1	Reference Diagram	
Flange surface perpendicular to shaft(A)	0.04 (0.06)* ²	2
Flange diameter concentric to shaft®	0. 04	
Shaft run out©	0.02 (0.04)*'	F@

Table 2.10 Mechanical Specifications in mm

*1 T. I. R. (Total Indicator Reading)

*2 Accuracy for motor types USADED-15E, -22E, and -37E.

*3 Accuracy for motor types USAMED-44B \boxdot 2 and USAMKD-60B \boxdot 2.

2.2.4 Rotating Direction

AC Servomotor rotating direction is CCW when viewed from the load side when connection shown in Par. 3. 3. 1 is performed and forward command is given to Servopack. (Fig. 3. 11)

2.2.5 Shock Resistance

When mounted horizontally and exposed to vertical shock impulses, the motor can withstand up to two incidents with shock acceleration of 10G (Fig. 3. 12).

Note

A precision detector is mounted on the oppositedrive end of AC servomotor. Care should be taken to protect the shaft from impacts that could damage the detector.

2.2.6 Vibration Resistance

When mounted horizontally, the motor can withstand vibration (vertical, lateral, axial) of 2.5 G (Fig. 3. 13).

2.2.7 Vibration Class

Vibration of the motor running at rated speed is 15μ m or below (Fig. 3. 14).

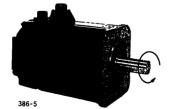


Fig. 2.11 AC Servomotor

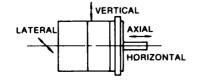


Fig. 2.13 Vibration Resistance

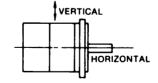


Fig. 2.12 Impact Resistance

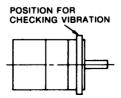


Fig 2.14 Vibration Checking

- 32 -

2.3 RECEPTACLES

2.3.1 Connector Specifications

- (1) Without brake (M, F, G, S, R series)
- (a) Motor receptacle
- M, F, G, R series

A	Phase U
B	Phase V
C	Phase W
D	Frame Ground

Fan terminal box connector specifications Type USAMKD-60BE32 • S series Type USASEM-02

Color of Lead	Applicable
Rec	Phase U
White	Phase V
Blue	Phase W
Green	Frame Ground

Phase U

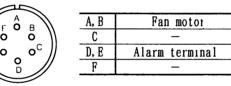
Phase V

Phase W

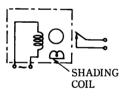
Frame Ground

Type USASEM-03A to 30A

Ď


0

A


B

С

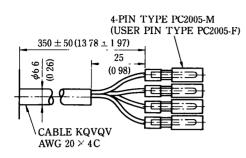
D

Fan motor connection

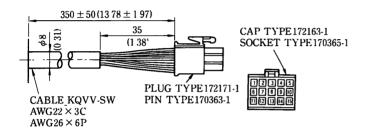
Power supply:single-phase 200/200/220V, 50/60/60Hz Alarm contact : OFF at fan rotation normal ON at 1800±200r/min or less ON for 3 seconds after starting Contact capacity : Resistance load max 110V 0.3A

- (b) Detector receptacle
- Incremental encoder

• Absolute encoder


A	Channel A output	K	_
В	Channel A output	L	-
С	Channel B output	M	—
D	Channel B output	N	—
E	Channel C output	Р	—
F	Channel C output	R	—
G	OV	S	—
H	+5VDC	Т	-
J	Frame Ground	-	_

Α	Channel A output	J	Fiame Ground
В	Channel A output	K	
C	Channel B output	L	-
D	Channel B output	M	
E	Channel Z output	N	
F	Channel Z output	Р	
G	OV	R	Reset
Н	+ 5VDC	S	OV(battery)
-	-	T	3.6V(battery)


(2) Without brake (P series)

(a) Motor side

Phase U	Red
Phase V	White
Phase W	Blue
Frame Ground	Green

(b) Detector side (absolute encoder)

1	Channel A output	Blue	9	Frame ground	Green/Yellow
2	Channel A output	White/Blue	10	Channel S output	Purple
3	Channel B output	Yellow	11	Channel S output	White/Purple
4	Channel B output	White/Yellow	12	Capacitor reset	Grey
5	Channel Z output	Green	13	Reset	White/Grey
6	Channel Z output	White/Green	14	OV(battery)	White/Orange
7	OV	Black	15	3.6V(battery)	Orange
8	5VDC	Red		—	-

(3)With brake

• M, F, G, D Series

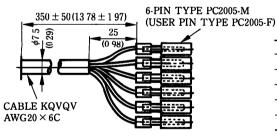
	A	Phase U	E	Brake terminal
FO OA	В	Phase V	F	Brake terminal
	C	Phase W	G	
D C	D	Frame Giound	-	-

Note:

1. D series is provided with brake as standard.

2. For motor without brake of D series, E and F are idle terminals.

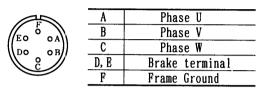
• S, R Series

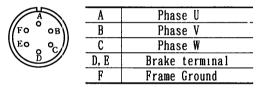

USASEM-02A

Color of Lead	Applicable			
Red	Phase U			
White	Phase V			
Blue	Phase W			
Black	Brake			
Black	Brake			
Green	Frame Ground			

USASEM -08A to -30A USAREM -05C, -05D, -07C

	A	Phase U
	В	Phase V
	C	Phase W
C° °B	D, E	Brake terminal
	F	Frame Ground


• P Series


Phase U	Red
Phase V	White
Phase W	Blue
Frame Ground	Green
Brake termiral	Black
Brake termiral	Black

USASEM -03A, -05A

USAREM -02C, -02D, -03C, -03D

USAREM -A5C, -A5D, -01C, -01D

2.3.2 List of Standard Combination

AC Servomotor		AC Ser	vomotor		Detector					
Type USAMED-	Receptacle	L-type Plug	Straight Plug	Cable Clamp	Receptacle	L-type Plug	Straight Plug	Cable Clamp		
03B [] 1	MS3102A	MS3108B	NCOLOGR	NOODER						
06B []] 1	18-10P	18-10S	MS3106B 18-10S	MS3057 -10A	1					
09B [] 2									i i	
12B [] 2	NE0100A	NCOLOOD	MCOLOOD	NDOOFE	Maraa	Margan	Marian			
20B [] 2	MS3102A 22-22P	MS3108B 22-22S	M\$3106B 22-22\$	MS3057 -12A	MS3102A 20-29P	MS3108B 20-29S	MS3106B 20-29S	MS3057 -12A		
30B [] 2										
44B [] 2	MS3102A	MCOLOOD	MOOLOOD	N00057	1					
USAMKD- 60b [_] 2*	MS3102A 32-17P	M\$3108B 32-17\$	MS3106B 32-17S	M\$3057 -20A						

Table 2.11 M Series : Characteristics of AC Servomotor, Detector, and Holding Brake (Option) for Standard Combination

 Table 2.12 F Series : Characteristics of AC Servomotor, Detector, and Holding Brake (Option) for Standard Combination

AC Servomotor		AC Sei	rvomotor			Detector			
Type USAFED-	Receptacle	L-type Plug	Straight Plug	Cable Clamp	Receptacle	L-type Plug	Straight Plug	Cable Clamp	
020 [] 1	M\$3102A	M\$3108B	M\$3106B	M\$3057	MS3102A				
03C [] 1	14S-2P	14S-2S	14\$-2\$	-6A	14S-29P				
050 [_] 1	N001001	100100D	MOOLOOD	1000055					
09B [] 1	MS3102A 18-10P	MS3108B 18-10S	MS3106B 18-10S	MS3057 -10A	MS3102A 20-29P	M\$3108B	MS3106B	MS3057	
13B [] 2						20-29\$	20-29\$	-12A	
20B [] 2	1001001	N00100D		1					
30B [] 2	MS3102A 22-22P	MS3108B 22-22S	MS3106B 22-22S	MS3057 -12A	MS3102A 20-29P				
44B [] 2									

Table 213 G Series. Characteristics of AC Servomotor, Detector,
and Holding Brake (Option) for Standard Combination

AC Servomotor Type USAGED-	AC Servomotor				Detector				
	Receptacle	L-type Plug	Straight Plug	Cable Clamp	Receptacle	L-type Plug	Straight Plug	Cable Clamp	<u> </u>
02A 🔝 1	M\$3102A 14\$-2P	MS3108A 14S-2S	MS3106B 14S-2S	MS3057 -6A	MS3102A 20-29P	MS3108B 20-29S	M\$3106B 20-29\$	M\$3057 -12A	
03A []] 1									
05A 🖸 1	MS3102A 18-10P	MS3108B 18-10S	MS3106B 18-10S	MS3057 -104					
09A 🖽 1									
13A [] 2									
20A [] 2	M\$3102A 22-22P	MS3108B 22-22S	MS3106B 22-22S	MS3057 -12A					
30A [] 2									
44A [] 2			1						

	Holding Brake							
Receptacle	L-type Plug	Straight Plug	Cable Clamp					
 MS3102A 20-15P	MS3108B 20-15S	MS3106B 20-15S	M\$3057 -12A					
MS3102A 24-10P	MS3108B 24-10S	MS3106B 24-10S	MS3057 -16A					
_	_	_	_					

*	Cooling fan required:
	Receptacle type
	MS3102A14S-6B
	Plug type
	M\$3108B14S-6S
	Cable clamp type
	MS3057-6A

iote	These connectors	
	are made by	
	DAI-ICHI DENSHI	
	KOGYO Co .Ltd	

	Holdi	ng Brake			
 Receptacle	L-type Plug	Straight Plug	Cable Clamp		
 MS3102A 14S-6P	MS3108B 14S-6S	MS3106B 14S-6S	MS3057 -6A		
MS3102A 20-15P	MS3108B 20-15S	M\$3106B 20-15\$	MS3057 -12A		
MS3102A 24-10P	MS3108B 24-10S	MS3106B 24-10S	MS3057 -16A	Note.	These are ma DAI-IC KOGYO

	Holding Brake									
Receptacle	L-type Plug	Straight Plug	Cable Clamp							
 MS3102A	MS3108B	MS3106B	MS3057							
14S-6P	14S-6S	14S-6S	-6A							
MS3102A	MS3108B	MS3106B	MS3057							
20-15P	20-15S	20-15S	-12A							
MS3102A	MS3108B	MS3106B	M\$3057							
24-10P	24-10S	24-10S	-16A							

e connectors nade by ICHI DENSHI D Co .Ltd

Notes:
 For connection parts(plugs, clamps, etc) contact your Yaskawa representative. For connecting method, there are two types soldering(MS type) and compression(JA type).
 There connectors are made by DAI-ICHI DENSHI KOGYO Co Ltd.

AC Servomotor Type USADED-		Holding	Brake		Detector				
	Receptacle	L-type Plug	Straight Plug	Cable Clamp	Receptacle	L-type Plug	Straight Plug	Cable Clamp	
05E []]	MS3102A	M\$3108B	MS3106B	M\$3057					
10E []]	20-15P	20-15 S	20-15\$	-12A			MS3106B 20-29S	MS3057 -12A	
15E []]	N001001	NOALOOD			MS3102A 20-29P	MS3108B 20-29S			
22E []]	MS3102A 24-10P		MS3106B 24-10S	MS3057 -16A					
37E []]							-		

Table 2.14 D Series : Characteristics of AC Servomotor, Detector, and Holding Brake for Standard Combination

Table 2.15 S Series: Characteristics of AC Servomotor, Detector and Holding Brake (Option) for Standard Combination

AC Servomotor Type USASEM-		AC Servomotor				Detector				
	Receptacle	L-type Plug	Straight Plug	Cable Clamp	Receptacle	L-type Plug	Straight Plug	Cable Clamp	5	
02A 🖽		Since le	ead outlet me	ethod differ	s.refer to th	e data sepa	rately			
03A 🖽	MS3102A 18-10P	MS3108B 18-10S	MS3106B	M\$3057]		
05A 🖂	10-101	10-103	18-10\$	-10A	NEOLOGA	MCOLOOD	MOOLOGR	NOODER	1 1	
08A 🔛	N601004	MEDIOOD	NOOLOOD	MOOSER	- MS3102A 20-29P	MS3108B 20-29S	MS3106B 20-29S	MS3057		
15A []]	MS3102A 20-4P	MS3108B 20-4S	MS3106B 20-4S	MS3057 -12A						
30A 🗌			1	ĺ						

Note There connectors made by DAI-ICHI DENSHI KOGYO Co., Ltd

AC Servomotor	AC Servomotor			E	etector		Holding Brake			
Type USAREM-	Receptacle Type	L-type Plug	Cable Clamp	Receptacle Type	L-type Plug	Cable Clamp	Receptacle Type	L-type Plug	Cable Clamp	
A5C [] 2	MS3101A	MS3106B*	M\$3057	MS3101A	MS3106B		MS3101A	MS3106B	M\$3057	
010 [] 2	14S-2P	14\$-2\$	-6A	20-29A	20-295*		14S-6P	14S-6S*	-6A	
020 []] 2	MS3102A	M\$3108B	M\$3057			M\$3057	MS3102A	M\$3108B	MS3057	
030 [] 2	18-10P	18-10S	-10A	MS3102A	MS3108B	-12A	18-12P	18-12S	-10A	
050 []] 2	M\$3102A	MS3108B	M\$3057	20-29P	20-29\$		MS3102A	MS3108B	M\$3057	
070 []] 2	20-4P	20-4S	-12A				20-17P	20-17S	-12A	
A5D [] 2	MS3101A	MS3106B	M\$3057	MS3101A	M\$3106B		MS3101A	MS3106B	M\$3057	
01D [] 2	14S-2P	14S-2S*	-6A	20-29A	20-29\$*		14S-6P	14S-6S*	-6A	
02D []] 2	M\$3102A	MS3108B	M\$3057			ME3057	M\$3102A	MS3108B	M\$3057	
03D [] 2	18-10P	18-10 S	OS -10A MS3102A MS3108B -12A	MS3102A MS3108B -12A		-12A	18-12P	18-12S	-10A	
05D []] 2	M\$3102A 20-4P	M\$3108B 20-4\$	MS3057 -12A	20-29P	20-29\$		MS3102A 20-17P	MS3108B 20-17S	M\$3057 -12A	

Table 2.16 R Series : Characteristics of AC Servomotor, Detector, and
Holding Brake (Option) for Standard Combination

* Straight Plug Note: These connectors are made by DAI-ICHI DENSHI kOGYO Co., Ltd

Notes

1. For connection parts(plugs.clamps.etc.), contact your Yaskawa representative For connecting method, there are two types·soldering(MS type) compression(JA type) 2. These connectors are made by DAI-ICHI DENSHI KOGYO Co . Ltd

	Holding Brake				
Receptacle	L-type Plug	Straight plug	Cable Clamp		
 MS3102A 18-12P	MS3108B 18-12S	_	MS3057 -10A		
MS3102A 20-17P	M\$3108B 20-17\$		M\$3057 -12A	Note	These connectors are made by DAI-ICHI DENSHI KOGYO Co., Ltd

Table 217 P Series: Characteristics of AC Servomotor, Detector, and Holding Brake for Standard Combination

			onnonnation	
AC Componenter	AC Servomotor	Dete	Holding Brake	
AC Servomotor Type USAPEM-	Pın Terminal	Connector(M LOCK Conver	Pın Terminal	
		Plug	Pin	
010 🖂 2	PC2005-M	172171-1	170363-1	PC2005-M
020 🖽 2	PC2005-M	172171-1	170363-1	PC2005-M
030 🖽 2	PC2005-M	172171-1	170363-1	PC2005-M
050 [] 2	PC2005-M	172171-1	170363-1	PC2005-M
070 🖂 2	PC2005-M	172171-1	170363-1	PC2005-M

Note: These connectors are made by AMP (Japan) Ltd.

3 RATINGS AND SPECIFICATIONS OF AC SERVOPACK

3.1 RATINGS AND SPECIFICATIONS

(1) 200V (Rack-mounted Type)

Servopack Type. CACR-HR A5AAB12 01AAB12 02AAB12 03AAB12 05AAB12 10AAB 15AAB Max Applicable Motor Capacity kw(HP) 0 05(0 07) 0 1(0 13) 0 2(0 27) 0 3(0 40) 0 5(0 67) 1 0(1 3) 1 5(2 0) 3-phase AC200 to 230V +10. Input power Main Single-phase AC200 to 230V +10. -15% 50/60Hz -15% 50/60Hz Basic Single-phase AC200 to 230V +10 -15% 50/60Hz Supply Control Control Method Full-wave rectifying, transistorized PWM control, sine-wave drives Speci Feedback Absolute encoder (8192P/R. 1024P/R), incremental encoder (8192 P/R, 2500P/R. 2048P/R) Ambient Temperature 0 to +55℃*° 1 ca t Storage Temperature -20 to +85℃ IONS Ambient/ Storage Humidity 90% or less (non-condensing) Configuration Rack-mounted Approx Weight kg 20 21 26 29 36 45 50 Position Control Kp = 1 to 200 (1/S) O%(load fluctuation 0 to 100%. Voltage fluctuation ± 10 %, temperature fluctuation 25 ± 25 °C) Regulation Speed Control Frequency Characteristic $100Hz (J_1 = J_M)$ Command Input Communication through FA bus +OT. -OT. EXP Input **B** Interface I/O Output ALM, BK Operated at main power OFF. servo alarm, servo OFF Dynamic Brake (DB) 60 Regeneration Not provided Built-in (regenerating resistor included) Rapid Dischaige Not provided Rapid discharge of main circuit capacitor at main power supply OFF By soft limit and hard LS internal command stop at operation Overtravel Protection Func **Protective Function** OV. OC. OL. OS. MCCB, PG. UV. CPU, ABS, POS. O-PH, RWY, RG. HARD, OF, SYS Main circuit power supply (MP), communicating with Motionpack (RUN), alarm (ALM), Alarm contents (ALAM), main circuit voltage (MAIN) Display 101 Monitor Speed, torque reference, or speed refefence output in analog values Others Absolute encoder battery mounted in Motionpack

Table 3.1

Table 3.2

	0										
	Servopack Type		O3AB	05AB	10AB	15AB	20AB	30AB	44AB	60AB*3	
Ma	x Applicable Mo	otor Capacity kw(HP)	0 3(0 40)	0 5(0 67)	1 0(1 3)	1 5(2 0)	2 0(2 7)	3 0(4 1)	4 4(5 9)	6 0(8 2)	
	Input power	Main	3-phase AC2	00 to 230V +	10, -15% 50/	60Hz					
Basic	Supply	Control	Single-phase	e AC200 to 2	30V +1015	% 50/30Hz (3	-phase for m	odel 60AB)			
1C	Control Method		Full-wave r	ectifying. t	ransistorize	d PWM contro	1, sine-wave	drives			
Ş	Feedback		Absolute en	coder (8192P	/R, 1024P/R)	. incrementa	l encoder (8	192 P/R, 2500	DP/R, 2048P/	2)	
Specif	Ambient Tempera	iture	0 to +55℃*	2							
fica	Storage Tempera	ture	-20 to +85℃	2							
ications	Ambient/ Storag	re Humidity	90% or less	(non-conden	sing)						
Suc	Configuration		Base-mounter	d							
	Approx Weight	kg		1	7			9	1	2	
Ра	Position Contro		Kp = 1 to 20	00 (1/S)				······			
Performance	Speed Control	Regulation 0% (load fluctuation 0 to 100%. Voltage fluctuation ±10%, temperature fluctuation $25\pm25\%$						5±25℃)			
102	Speed Control	Frequency Characteristic	100Hz (J. =	Ju)							
钅	Command Input		Communication through FA bus								
Imput/Output	Interface 1/0	Input	+OTOT EXP								
10		Output	ALM. BK								
_	Dynamıc Brake ((DB)	Operated at main power OFF, servo alarm, servo OFF								
Built	Regeneration		Built-in (regenerating resistor included) For model 60AB regenerating resistor is separated								
	Rapid Discharge		Rapid discharge of main circuit capacitor at main power supply OFF								
10	Overtravel Prot	ection	By soft limit and hard LS internal command stop at operation								
'n	Protective Func	tion	OV. OC. OL. OS. MCCB, PG. UV. CPU. ABS, POS. O-PH. RWY, RG. HARD. OF, SYS. OH								
Function	Display		Main circuit power supply (MP), control power supply (P) alarm (ALM), Alarm contents (7 segments).								
	Monitor		Speed. torqu	ue regerence	or speed r	eference out	put in analo	g values			
0t	hers		Absolute end	coder batter	y mounted in	Motionpack					

3

*1 Cannot be used when power supply voltage exceeds 230V. +10% (253V)

Lower-voltage transformer is needed in this case

*2 Use servopack within this range of ambient temperature

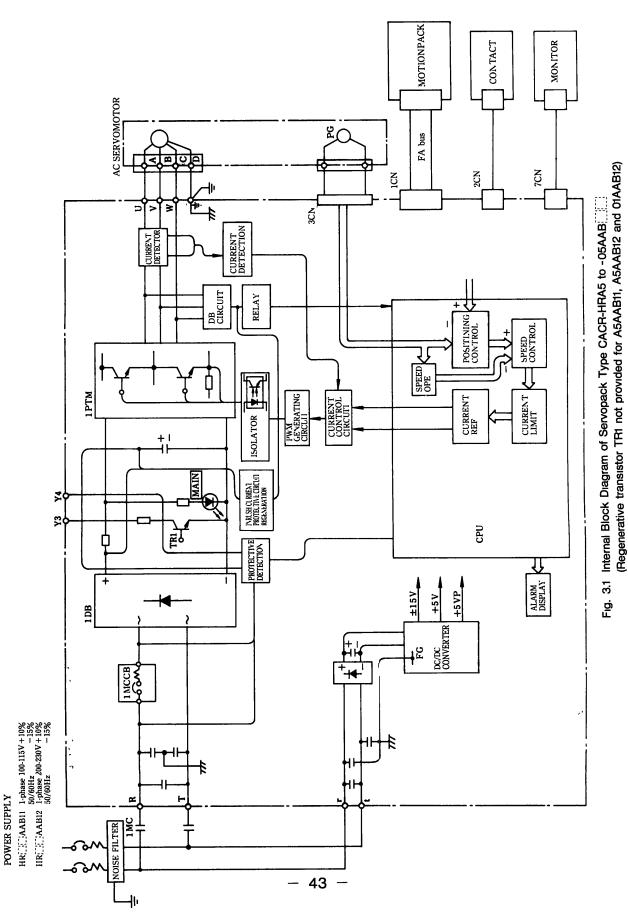
The temperature in the box should not exceed this value when storing servopack in the box

#3 To be released soon

Table	3.3
-------	-----

	Servopack Type	. CACR-HR	A5AAB11	01AAB11	02AAB11	03AAB11	05AAB11				
Ma	x Applicable Mo	tor Capacity kw(HP)	0 05(0 07)	0 1(0 13)	0 2(0 27)	0 3(0 40)	0 5(0 67)				
_	Input power	Main	Single-phase AC100	ingle-phase AC100 to 115V +1015% 50/60Hz							
Basic	Supply	Control	Single-phase AC100	to 115V +1015% 50	/60Hz						
	Control Method		Full-wave rectifyin	g, transistorized PW	M control, sine-wave	drives					
Speci	Feedback		Absolute encoder (8	192 P/R)							
	Ambient Tempera	ture	0 to +55℃*2								
icat	Storage Tempera	ture	-20 to +85℃								
Ions	Ambient/ Storag	e Humidity	90% or less (non-co	ndensing)							
s	Configuration		Rack-mounted								
	Approx Weight	kg	20	2 1	2 6	29	36				
Per	Position Control		Kp = 1 to 200 (1/S)								
Performance	Speed Control	Regulation	O%(load fluctuation 0 to 100%. Voltage fluctuation ±10%. temperature fluctuation 25±25°C)								
ince	speed control	Frequency Characteristic	$100Hz (J_t = J_w)$								
÷.	Command Input		Communication through FA bus								
Input, Outpu	Interface 1/0	Input	+OTOT. EXP								
Ę.	Interrace 1/0	Output	ALM BK								
	Dynamıc Brake (DB)	Operated at main power OFF. servo alarm, servo OFF								
Buili	Regeneration		Not provided Built-in (regenerating resistor included)								
Ē	Rapid Discharge		Not provided Rapid discharge of main circuit capacitor at main power supply OFF								
ä	Overtravel Prote	ction	By soft limit and hard LS internal command stop at operation								
Fu	Protective Func	tion	OV. OC. OL. OS. WCCB, PG. UV. CPU. ABS. POS. O-PH. RWY. RG. HARD. OF. SYS								
Function	Display		Main circuit power	supply (MP), communi	cating with Motionpac	k (RUN). alarm (ALM), Alarm contents				
î	DISPLAY		(ALARM), main circ	uit voltage (MAIN)							
	Monitor		Speed, torque refer	ence, or speed refer	ence output in analog	values					
0t	hers		Absolute encoder ba	ttery mounted in Mot	lonpack						

*1 Cannot be used when power supply voltage exceeds 230V, +10% (253V)


Lower-voltage transformer is needed for this case

*2 Use servopack within this range of ambient temperature

The temperature in the box should not exceed the value when storing servopack in the box

3.2 INTERNAL BLOCK DIAGRAM (Figs. 3.1, 3.2, 3.3)

3.2.1 Servopack Type CACR-HRA5AAB1 to -HR05 AAB1

E

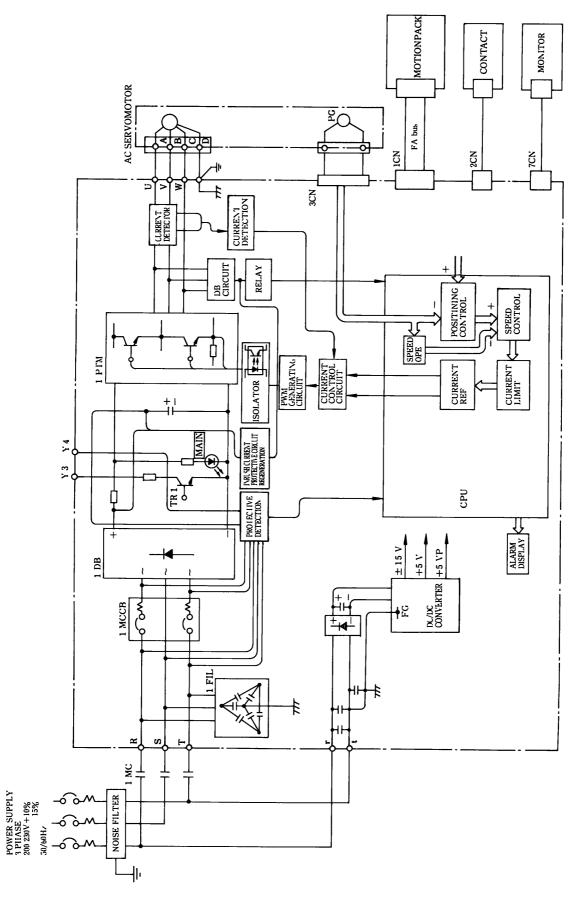
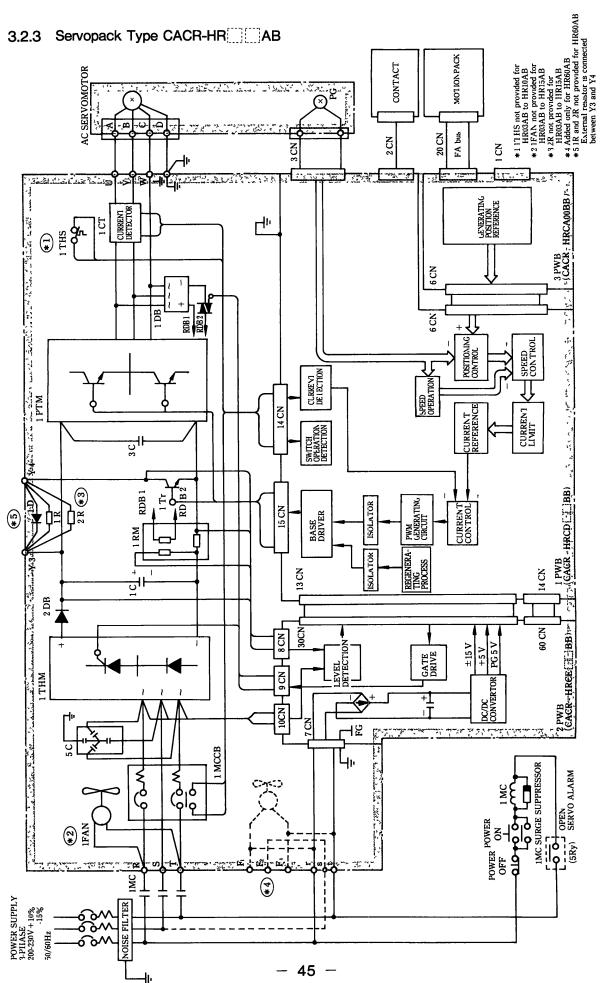



Fig. 3.2 Internal Block Diagram of Servopack Type CACR-HRI0AAB, -15AAB

3.3 Internal Block Diagram Servopack Type CACR-HR03AB to HR60AB

ы. Ц

3.3 PROTECTIVE CIRCUIT

Servopack provides functions to protect the Servopack and motor from malfunctions.

(1) Dynamic brake function

Servopack incorporates a dynamic brake for emergency stopping. This brake operates when:

- Alarm (fault detection) occurs.
- Servo ON command is opened.
- Main power supply is turned off.
- (2) Trouble detecting functions

Trouble	Detection				
Overcurrent (OC)	Overcurrent flow in the main circuit (at 1.2 times or more of inst. max. current)				
Circuit Protector Trip (MCCB)	Circuit protecter tripped				
Regeneration Trouble (RG)	Regenerative circuit not activated in Servopack.				
Overvoltage (OV)	Excessively high DC voltage in the main circuit. (200V input: approx. 420V, 100V input: approx. 220V)				
Overspeed (OS)	Excessively large motor speed.				
Main Circuit Power Supply Fault	Maın circuit rush current limit cırcuit fault				
Overload (OL)	Overload condition of motor and Servopack.				
Heatsınk Overheat (OH)	Overheat of heatsink (approx. 85 °C min.) (for types HR15AB to HR60AB)				
System Erior (SYS)	FABUS communication error				
PG Disconnection (PG)	Encoder signal disconnection				
Overflow Deviation (OF)	Excessive set deviation amount				
Open Phase (O-PH)	Any one phase open in three-phase power supply.				
Overrun Prevention (RWY)	Wrong wiring of motor circuit or PG signal line.				
CPU Error (CPU)					
Hardware Error (HARD)	Any error of CPU				
Absolute Control Error (ABS)					
Position Error (POS)	Errors related to absolute encoder				

Table 3.4 Trouble Detecting Functions

(3) Overload Detection (OL) Level

Overload detection level can be set as shown in Fig. 4.4 when motor rated current = 100%. When allowable current applying time at motor locking is at the maximum, higher rotating speed can make more rapid motion for the same overload.

NOTE

Overload detection level is determined with hot start conditions of ambient temperature 55° C. The set value cannot be changed.

Fig. 3.4 Overload Characterisitics

(4) Servo alarm output [ALM]

If any trouble detection occurrs in Table 3.4 functions, the power drive circuit in the Servopack goes off, 7-segment LED indicates the operation condition and a servo alarm signal is output.

3.4 PRECAUTIONS FOR APPLICATION

3.4.1 Minus Load

The motor is rotated by the load; it is impossible to apply brake (regenerative brake) against this rotation and achieve continuous running.

Example: Driving a motor to lower objects (with no counterweight)

Since Servopack has the regenerative brake capability of short time (corresponding to the motor stopping time), for application to a minus load, contact your Yaskawa representative.

3.4.2 Load Inertia (JL)

The allowable load inertia J_{\perp} converted to the motor shaft must be within five times (M, F, G, D, S, P series) or ten times (R series) the inertia of the applicable AC servomotor. If the allowable inertia is exceeded, an overvoltage alarm may be given during deceleration. If this occurs, take the following actions:

- Reduce the current limit.
- Slow down the deceleration curve.
- Decrease the maximum speed.

For details, contact your Yaskawa representative.

3.4.3 Allowable Cyclic Operating Frequency

Start/Stop cyclic operating frequency is limited separately by Servopack and Servomotor. It is necessary to satisfy both conditions.

Allowable cyclic operating frequency limited by Servopack
 Servopack limitation is due to Servopack built-in regenerative resistor power loss.

Allowable frequency differs depending on combined motor types, capacities,

load inertia J_1 , accel/decel current and motor speed.

For the following cases, contact your Yaskawa representative.

- When start/stop cyclic operating frequency up to rated speed exceeds 60 times/min at load inertia $J_1 = 0$.
- When start/stop cyclic operating frequency up to rated speed sxceeds $-\frac{60}{m+1}$ times/min at load inertia J_1 -= motor inertia $J_M \times m$ times.

(2) Allowable cyclic operating frequency limited by Servomotor

When AC Servomotor effective torque in an operation cycle is within the continuous duty zone of motor performance (Par. 3. 1). the operation can be repeated in the operation cycle.

3.4.4 High Voltage Line

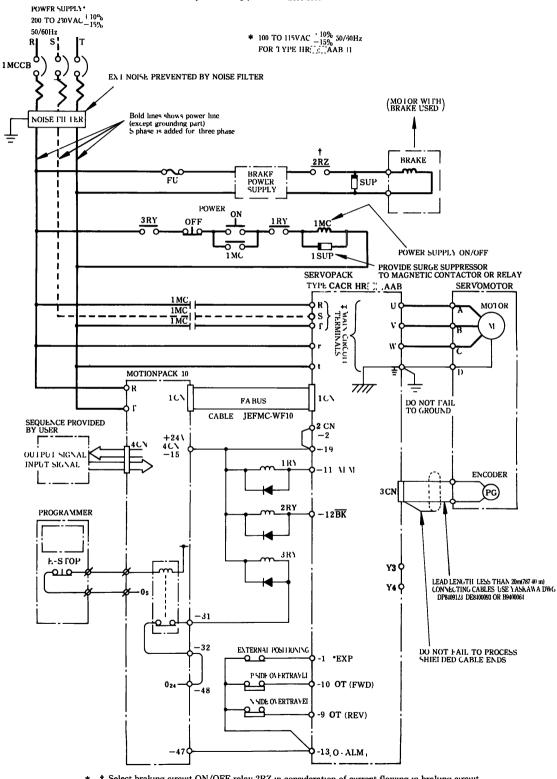
If the supply voltage is 400/440 V, the voltage must be stepped down three-phase 400/440V to 200 V* by using a power transformer. Table 6.3 shows the transformer selection. Connection should be made so that the power is supplied and cut through the primary side of the transformer.

*100V for Servopack type HR [][] AAB11.

3.5 POWER LOSS

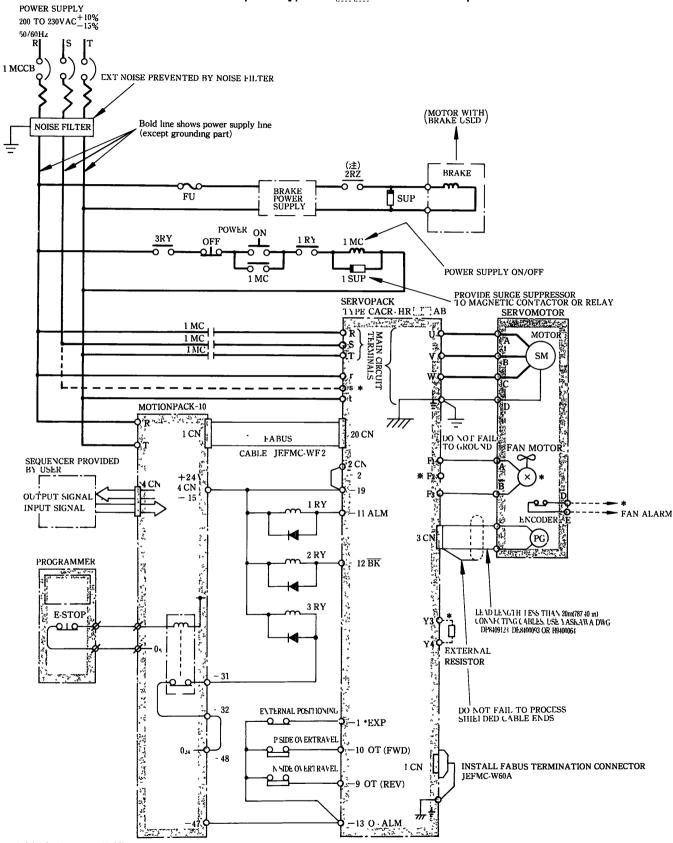
The power loss of Servopack is shown in Table 4.2.

0 I Mar			Power L	055	
Servopack Type CACR-	Output Current A	Main Circuit W	Regenerative Resistor * W	Control Circuit W	Total W
HRA5AAB12	0.7	20	-		50
HR01AAB12	1. 0	25	-		55
HRO2AAB12	2. 0	30	6		66
HRO3AAB12	2.7	35	6	30	71
HR05AAB12	3.6	55	6		91
HR10AAB	7.6	70	20		120
HR15AAB	11.7	80	20		130
HRO3AB	3. 0	20	10		90
HR05AB	4.2	40	10		110
HR10AB	7.6	70	20		150
HR15AB	11.7	80	20	00	160
HR20AB	18.8	100	40	60	200
HR30AB	26. 0	160	80		300
HR44AB	33. 0	210	· 100		370
HR60AB	45. 0	300	120		480
HRA5AAB11	1.2	20			50
HRO1AAB11	1.7	¦ 25	6		61
HRO2AAB11	2. 9	40	6	30	76
HRO3AAB11	3.6	50	6		86
HR05AAB11	5.5	45	15		90


Table 3.5 Power Loss at Rated Output

 Power loss in regenerative resistors occurs at motor deceleration. The maximum allowable value of average power loss is shown.
 When a motor operates in a duty cycle exceeding this value, a regenerative resistor must be provided.

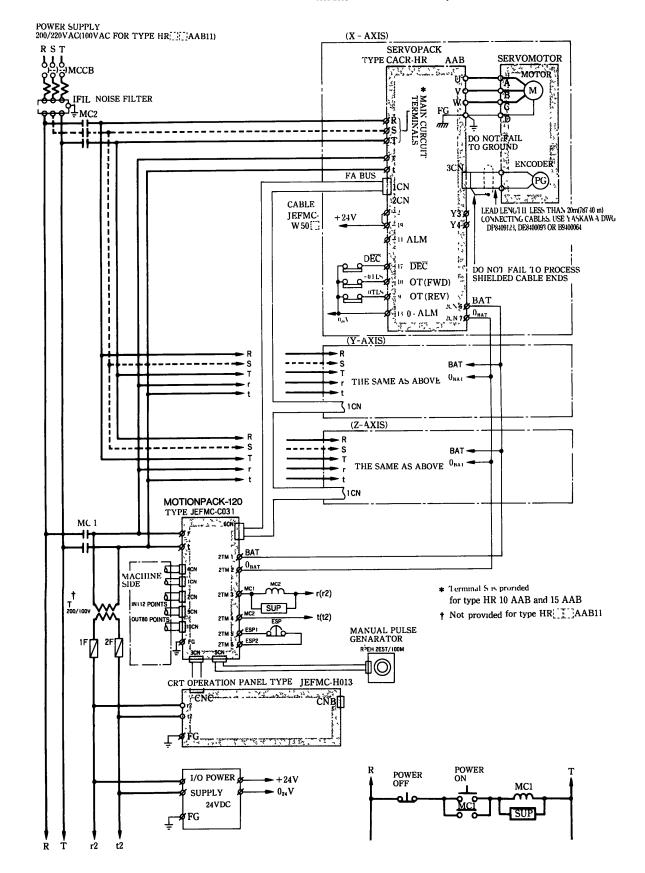
4 CONNECTION


4.1 TYPICAL CONNECTION

4.1.1 Connection between Servopack Type HR AAB and Motionpack-10

* † Select braking circuit ON/OFF relay 2RZ in consideration of current flowing in braking circuit
 * \$ S-phose is added for types CACR-IIR 10 AAB and -HR 15AAB

Fig. 41 Connection Example between Servopack Type CACR-HR AAB, Motor and Motionpack-10



4.1.2 Connection between Servopack Type HR AB and Motionpack-10

* Added only to type 60 AB.

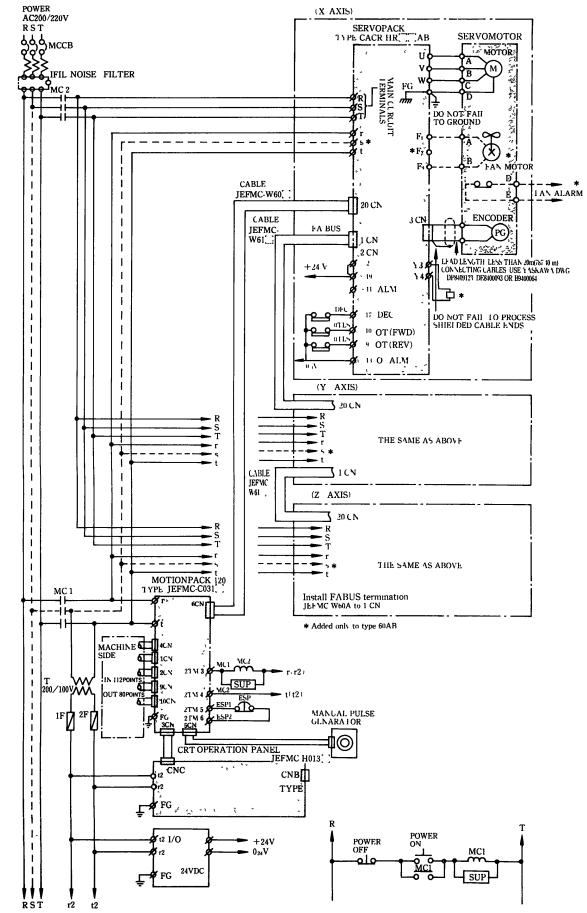

† Select braking ciruit ON/OFF relay 2RZ in consideration of current flowing in braking circuit

Fig. 4.2 Connection Example between Servopack Type CACR-HR AB, Motor and Motionpack-10

4.1.3 Connection between Servopack Type HR AB and Motionpack-120

Fig. 4.3 Connection Example between Servopack Type CACR-HR AAB, Motor and Motionpack-120

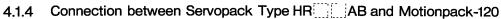


Fig. 4.4 Connection Example between Servopack Type CACR-HR

4.2 MAIN CIRCUIT TERMINAL NAMES AND OUTLINE

Symbol	Name	Outline							
*' RST	Main curcuit power supply input terminal	$^{*2}_{3-phase}$ 200 to 230VAC $^{+10\%}_{-15\%}$, 50/60Hz							
	Motor connection teiminal	(U)and motor terminal A; (V) and motor terminal B; (W) and motor terminal C connected							
(r) (t)	Control power supply input terminal	$^{*1}_{\text{Single-phase 200 to 230VAC}} + 10\% - 15\%$, 50/60Hz							
Grounding terminal Connected with motor terminal D to g									
(13) (14)	Regenerative resistor connecting terminal								
*1 F1F2F3	Motor cooling fan connecting termınal	Conection needed only when Type USAMKD-60B is used.							
*2 : Sin	①for Type HR []]] AAB1 gle-phase 100 to 115VAC	-10%, 50/60Hz for Type HR []]] AAB11.							
Sin	gle-phase 200 to 230VAC ⑤,① only for Type HR60	⁺¹⁰ % , 50/60Hz for Type HR []][] AAB12.							
*4 : Sin	*4 : Single-phase 100 to 115VAC $^{+10.96}_{-15.96}$, 50/60Hz for Type HR []][] AAB11.								
3-	phase 200 to 230VAC	+10% -15% , 50/60Hz for Type HR60AB.							
*5 : Ext		connected for Type HR60AB.							

Table 41 Main Circuit Terminal Names and Outline

4.3 CONNECTOR 2CN (FOR I/O SIGNAL)

4.3.1 Applicable Receptacle Specifications

Specifications of Connector Used in	Applicable Receptacle Type							
Scrvopack *1	Soldered Type	Caulking Type	Case	Maker				
MR-20RFA Right angle 20P	MR-20M*²	MRP-20M01	MR-20L*2	HONDA Tsushin Co., Ltd.				

Table 4.2 Applicable Receptacle Specifications

*1 Made by HONDA Tsushin Co., Ltd.

*2 Standard attachment of Servopack

4.3.2 Connector 2CN Layout and Connection

Table 5.3 shows the terminal layout of connector 2CN and Fig. 5.6 shows connector 2CN and I/O signal connection and the processing method.

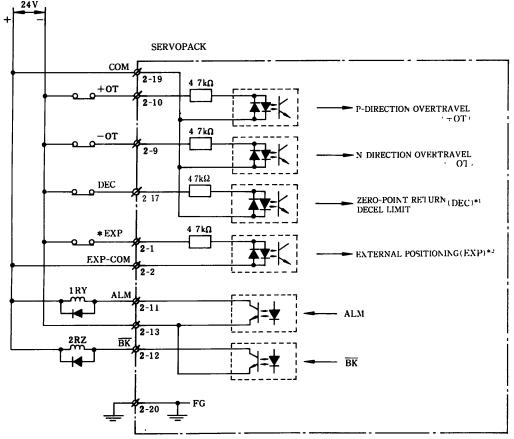

				Iai	JE 4.0	_ 001		2011	Layou				
	1		2		3		4		5		6	•	7
*EXP		EXP	СОМ	-		_		—		BAT *3		Oı	*3 BAT
	8	3		9	1	0	1	1	1	2	1	3	
	OT		+ OT AL		LM	M BK		O - ALM					
1	14	1	5	1	6	1	7	1	8	1	9	2	0
-			-		_	DI	DEC *2				СОМ		G

Table 4.3 Connector 2CN Layout

*1 Not used for Motionpack-120.

*2 Not used for Motionpack-10.

*3 Necessary when using absolute encoder.

-*1 Not used for Motionpack-10. *2 Not used for Motionpack-120.

Fig 4.5 2CN and I/O Signal Connection and External Signal Process

4.3.3 Connector 2CN I/O Signals and How to Use

Signal Name	Pin No.	Name	Function						
+OT 10 P-side overtravel			Connects limit switch signal according to forward or reverse						
-0T	9	N-side overtravel	side. This signal is turned on at normal operation and off at limit switch operation.						
*EXP	1	External positioning	Used as contact for external positioning in Motionpack. On at normal operation. *1						
DEC	17	Zero point return decel limit	Used in zero-point return. After 2-step deceleration by DEC signal, zero-point return is performed. ON at narmal operation. *2						

Table 4.3 Input Signals

Signal Name	Pin No.	Name	runction					
ALM	11	Servo alarm	Output transistor is turned off when an alarm occurs in servopack or watch dog timer is dropped out. Transistor is ON at normal operation (Signal is "L" level).					
BK	12	Brake	Relay control signal for brake. Relay is turned on by the signal under current conduction (SVON), off under non-current conduction.					

*1 : Not used in Motionpack-120.

*2 : Not used in Motionpack-10.

4

4.4 CONNECTOR 3CN (FOR ENCODER)

4.4.1 Applicable Receptacle and Cable Specifications

Specifications of Connector Used	I	Connecting Cable				
in Servopack *1	Soldered Type	Caulking Type	Case	Maker	Specifications	
MR-20RFA Right angle 20P	MR-20F *2	MRP-20F01	MR-20L *2	HONDA Tsushin Co., Ltd.	DP8409123, B9400064 or DE8400093	

Table 4.5 Applicable Receptacle and Cable Specifications

*1 Made by HONDA Tsushin Co., Ltd.

*2 Standard attachment of Servopack

Note: For connecting cables, YASKAWA prepares the cables with the following specifications. However, they are not attached to Servopack oi motor. They can be purchased at prepared length on request. (Table 5.5)

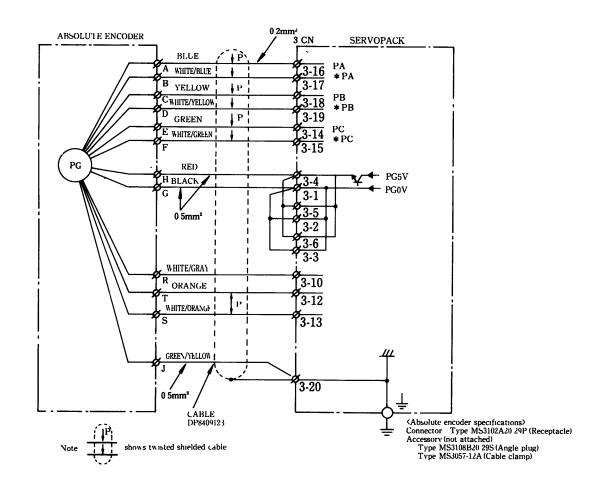
Soldered ty YASKAWA DWG. No. D			Soldered typ	e		0	
YASKAWA DWG. No. D	P8409123		Soldered type			Caulking ty	pe
	YASKAWA DWG. No. DP8409123			9400064	YAS	SKAWA DWG. No D	E8400093
			Fujikura Cable	Co	L		
¢8 0mm			φ7.5mm			¢10.0mm	
(For soldered	type)		(For soldered	type)		(For caulking	type)
h			(A) (A) (A) (A) (A) (A) (A) (A)	F2			
A ₁ Red A ₂ Black A ₃ Green-yellow B ₁ Blue-white-		$ \frac{A_1}{A_2} $ $ \frac{A_3}{F_1} $	Red Black Green/yellow Blue-white/ blue	1	1 2 3 4	Blue-white Yellow-white Green-white Red-white	
B ₂ Yellow-white- yellow		F ₂	Yellow-white/ yellow	Twisted cable	5 6	Purple-white Blue-brown	} Twisted cable
3 ₈ Green-white- green	Twisted	F۹	Pale green- white/pale		7	Yellow-brown	
3₄ Orange-white orange	<pre>> cable</pre>	F4	Orange-white/		9	Red-brown	
8, Purple-white- purple			01 &II & C		10	Purple-brown	
Gray-white- gray				:			
3 3 3	B. B	I Red 2 Black 3 Green-yellow 1 Blue-white-blue 2 Yellow-white-yellow 3 Green-white-green 4 Orange-white-purple 5 Purple-white-gray	B, A, B,	B B B <td>B B</td> <td>$\frac{1}{1} \frac{\text{Red}}{2}$ $\frac{1}{1} \frac{\text{Red}}{2}$ $\frac{1}{2} \frac{\text{Black}}{1}$ $\frac{1}{2} \frac{\text{Black}}{1}$ $\frac{1}{2} \frac{\text{Black}}{1}$ $\frac{1}{2} \frac{\text{Black}}{1}$ $\frac{1}{2} \frac{\text{Blue-white-}}{1}$ $\frac{1}{2} \frac{1}{2}$</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td>	B B	$\frac{1}{1} \frac{\text{Red}}{2}$ $\frac{1}{1} \frac{\text{Red}}{2}$ $\frac{1}{2} \frac{\text{Black}}{1}$ $\frac{1}{2} \frac{\text{Black}}{1}$ $\frac{1}{2} \frac{\text{Black}}{1}$ $\frac{1}{2} \frac{\text{Black}}{1}$ $\frac{1}{2} \frac{\text{Blue-white-}}{1}$ $\frac{1}{2} \frac{1}{2} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

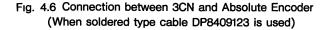
<u>A</u>

Table 4.6 Applicable Cable Specifications

NOTES:

When applicable cable is used. allowable wiring distance between Servopack and motor (PG) is up to 20m.
 When wiring distance between Servopack and motor (PG) exceeds 20m, cable which can be used for up to 50m wiring distance (YASKAWA DWG No. DP8409179) is available Contact your YASKAWA representative


4.4.2 Connector 3CN Layout and Connection


The terminal layout for the Servopack connector (3CN) is shown in Table 5.6, the connecting method with absolute encoder in Figs. 5.7 and 5.8 and the connecting method with incremental encoder in Figs. 5.9 and 5.10.

	1		2		3		4		5		6		7
PG	iov	PG	OV	V PGOV		PG	PG5V PG5V		PG5V		_	-	
	8 9		1	10 1		1	1	2	1	3			
	-	-	-			-		-	BA	Τ*	BAT	0*	
1	4	1	5	1	6	1	7	1	8	1	9	2	0
P	PC 0	*	PC	P	A	*	PA	Р	B	*P	B	F	G

Table 4.7 Connector 3CN Layout

* Required only when absolute encoder is used.

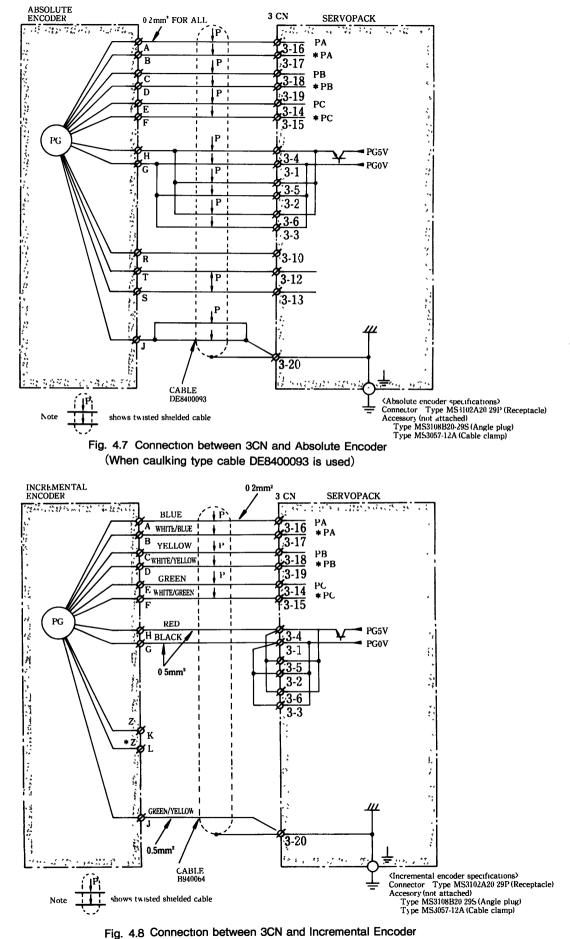
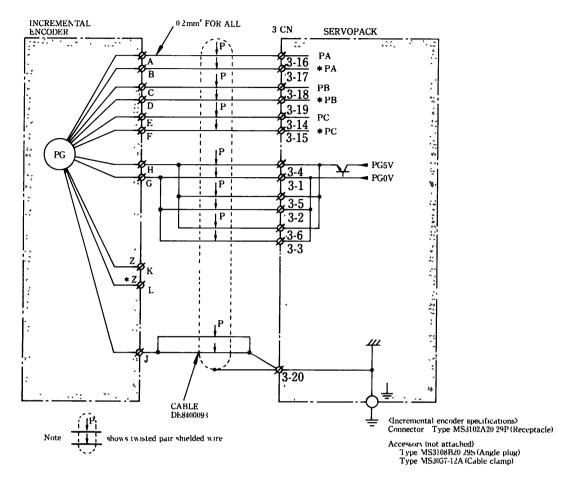
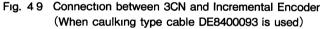




Fig. 4.8 Connection between 3CN and incremental Encoderma (When soldered type cable B9400064 is used)

4.4.2 Connector 3CN Layout and Connection (Cont'd)

5 DISPLAY/MONITOR FUNCTIONS

5.1 DISPLAY

Each type of display is performed by LED indicators and 7-segment indicator. Table 5.1 shows LED indicators. Table 5.2 shows status and Table 5.3 shows alarm display.

Table	5.1	LED	Indicators
-------	-----	-----	------------

Display specifications	Name	Conditions at Lighting
Alarm Display	ALM	At alarm occurrence
Communication Display	RUN	FABUS communication normal *1
	Р	At control power supply input *2
Power Supply Display	MP	Normal main circuit power supply
	MAIN	Voltage is provided in main circuit *1

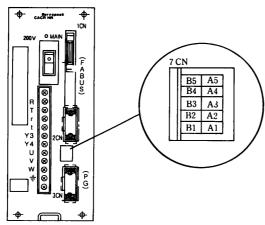
*1: Only for type HR [_] AAB

*2: Only for type HR [____] AB

Table 5.2 Status

Display	Display Contents (at lighting)
	Waiting for communication with Motionpack
	Baseblocking (Stops current conduction)
	Baseblock is released (Indicates current conduction to motor)
<i>Ρ</i> .	P-side overtravel
n.	N-side overtravel

Display	Display Contents (at lighting)
<u> </u>	ABSO error
1.	Overcurrent
2.	Circuit protector trip
З.	Regenerative error
Ч.	: Overvoltage
5.	Overspeed
δ.	Under voltage
7.	Overload
8 .	Position error
<i>R</i> .	Heatsink overheat (only for TYPE HR15AB to HR60AB)
Ξ.	PG disconnection
Ε.	System error
۶.	Open Phase
J.	Overflow deviation
<u> </u>	Overrun
	CUP error
Н.	Hardware error


Table 5.3 Alarm Display

5.2 MONITOR FUNCTION OF SERVOPACK TYPE CACR-HR AAB AND TYPE CACR-HR AB

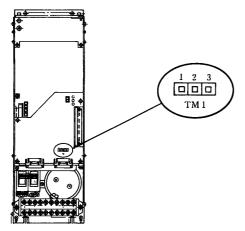
Motor speed, torque reference or speed reference can be monitored in analog value. Torque or speed reference are selected by parameter. (Refer to user's manual of Motionpack for parameter.)

Make sure not to be short-circuited with next pin in measuring.

5.2.1 Servopack Type CACR-HR

Notes:

1 Check terminals can be observed by oscilloscope If the pin is inserted 7mm or more, it may by shorted the other signal


Inset to the short-side pin of connector type PS-10PE D4R1-A1(made by Japan Aviation Electronics Industry. Ltd.).

- 2 At observation, do not contact adjacent check terminals.
- 3. Accuracy $\pm 10\%$
- 4 8-bit D/A converter is used Ripple for 1-bit generates at output

Pin No.	Signal Name	Name	Output Voltage			
B5	V _{TG}	Motoi Speed	\mp 2.0V/±1000r/m	11N		
A5	Тмон	Torque or speed	Torque reference	\mp 3. 0V/ \pm 100%		
	IMON	reference	Speed reference	$\pm 2.0V/ \pm 1000r/min$		
B1	GND	OV for signal	OV			

5.2.2 Servopack Type CACR-HR

Pin No.	Signal Name	Name	Output Voltage			
TM1-1	V _{TG}	Motoi Speed	$\mp 2.0 \times \frac{P^*}{8192}$ V/±1000r/min			
TM1-2		Toique oi speed	Torque reference	\mp 3.0V/ \pm 100%		
	IMON	Т _{мом} iefeience		Speed reference	±2.0V/ ±1000r/min	
TM1-3	GND	OV for signal	OV			

*: P Value is number of encoder pulses per revolution (P/R) to be used. Notes: 1. Accuracy : $\pm 10\%$

2. 8-bit D/A converter is used. Ripple for 1-bit generates at output.

6 OPERATION

6.1 COMMAND INPUT

Command input of servopack is performed through FABUS.

Motionpack controls each reference by command.

Refer to user's manuals of Motionpack-10 or -120 for system starting and operation.

6.2 CONNECTION WITH MOTIONPACK

6.2.1 Type HR []] AAB

Connection with Motionpack is performed by FABUS. Use 20-core flat cable when the distance between units are less than 30cm(11.8 in); use 20-core twisted ribbon cable when more than 30cm(11.8 in).

MOTIONPACK-10		SERVOPACK TYPE CACR HR[]]AAB
1CN 1	DATA	
2	DATA	12
	05V	3
4	05 V	4
5	СК	5
6	<u>CK</u>	<u> </u>
<u> </u>	05 V	
8	05 V	18 12
91	SEL	9
10-	SEL	10
111	05 V	
12	05 V	12
13	SALM	413
14	SKPON	14
17-	* BAT+	17
187	*ват-	18
20	05 V	20
	$\overline{\nabla}$	
	FLAT CABLE (2 TWISTED RIBBO	20-CORE) OR DN CABLE (20-CORE)

* Connection is different between Motionpack-10 and -120. For details, refer to user's manual of Motionpack.

Fig 61 FABUS

6.2.2 Type HR []] AB

Connection with Motionpack is performed by FABUS, as show in Fig. 6.3. Connection cables must be provided by user.

MOTIONPACK-10		SERVOPACK
1CN	·	20CN
<u> </u>	Í DATA	
2 Ţ	<u> </u> <u> </u> 	<u> </u>
3	05 V	2
4	05 V	12
5	СК	3
6	СК	(13
7	05 V	4
8	05 V	14
9	SEL	5
10	SET	15
11	05 V	6
12	05 V	16
13	SALM	7
14	SKPON	17
17	* BAT -	9
18	*bat	19
20	05 V	20

* Connection is different between Motionpack-10 and -120. For details, refer to user's manual of Motionpack

Fig 6 2 FABUS

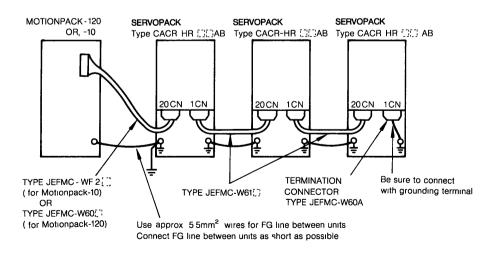


Fig 6.3 Connection with Motionpack

6.3 CONFIGURATION OF I/O CIRCUIT

Each I/O circuit is a non-contact circuit insulated with photocouplers. The external circuits, therefore, must be constructed with the specified voltage and current.

6.3.1 Input Circuit

There are three input signals: Overtravel (OT), external positioning (*EXP), zero-point return decel limit (DEC). Construct the input circuit using 24V power supply (Fig. 6.4). 24V power supply is provided with Motionpack.

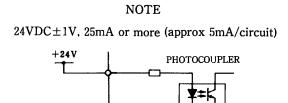


Fig 6.4 Configuration of I/O Circuit

APPROX 5mA

6.3.2 Output Circuit

There are two output signals: Servo alarm (ALM) and brake (BK).

٥v

These output circuits are non-contact, employing transistors. 24V power supply is provided with Motionpack.

Applied Voltage(Vmax)≤30V Conduction Current (Ip)≤50mA

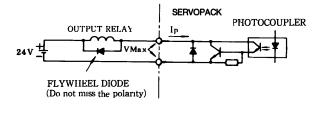


Fig 6.5 Output Circuit

6.3.3 Absolute Encoder

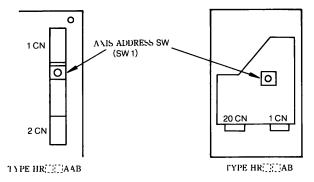
Absolute encoder memorizes position information even during power failure by batteries connected with Motionpack-10 and -120.

The power is supplied through FABUS in Motionpack-10 and through 2CN in Motionpack-120. Therefore, do not remove FABUS or 2CN for more than 4 days except at setting-up, etc. Accurate position information is lost.

Setting up of Absolute Encoder

When machine rotation data is to set to 0 during motor test run, or when keep absolute encoder disconnecting with battery for more than 4 days, the following setting up is necessary.

(If the above state occurs, the capacitor voltage becomes incomplete value and internal devices may not work normally.)


- 1 Discharge
 - Short-circuit between connector R and S of encoder for more than two minutes. [Discharge capacitor in encoder.]
 - When signal cable of encoder side is not connector but in bulk, short-circuit between reset signal terminal (purple) and OV (white/purple).

- ② Wiring and Battery Connection Refer to user's manual of Motionpack.
- ③ Power ON Refer to user's manual of Motionpack.

6.4 SETTING OF AXIS ADDRESS

Set axis address according to user's manual of Motionpack-10 or -120.

Be sure to set SW1 to "1" when connecting with Motionpack-10. Set SW1 to "X-axis = 1". "Y-axis=2", "Z-axis=3", "A-axis=5". and "B-axis=6" when connecting with Motionpack-120.

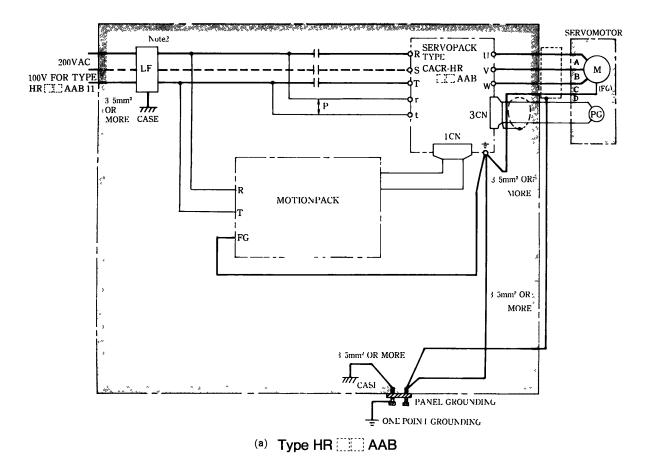
6.5 SETTING OF MOTOR CODE

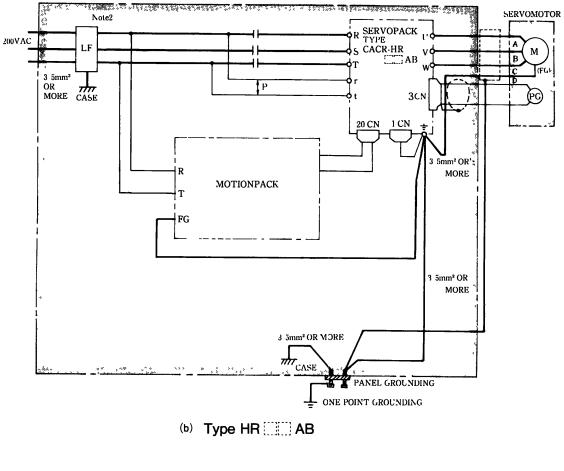
Motor codes are set by Motionpack for servopack types CACR-HR[[]]AB and -HR[[]]AB. For details, refer 'to user's manual of Motionpack.

M Series		F Series		G Series		D Series	
Motor Type USAMED-	Lode		Code	Motor Type USAGED-	Code	Motor Type USADED-	Code
	0	02 C[]]1	10	02 A[.]1	50		40
03 B[]]1	1	03 C[]]1	11	03 A[]]1	51		41
06 B[]]1	2	05 C[]]1	12	05 A[.]1	52	05 E'_]	42
09 B[]]2	3	09 C[]]1	13	09 A[.]1	53	10 E']]	43
12 B[]]2	4	13 C[]]2	14	13 A[.]2	54	15 E[]]	44
20 B[]]2	5	20 C[]]2	15	20 A[]2	55	22 E[]]	45
30 B[]]2	6	30 C[]2	16	30 A[]2	56	37 E[_]	46
44 B[]]2	7	44 C[]2	17	44 A[]2	57		47
USAMKD- 60 b[]]2	8		18		58		48

6

Table 6.1 Motor Selection Code


S Series		R Series (20	(V0	R Series (10	0V)	P Series	
Motor Type USASEM-	Code	Motor Type USAREM-	Code	Motor Type USAREM-	Code	Motor Type USAPEM-	Code
02 A[]]	20		30		60		70
03 A[]]	21		31		61		71
05 A[]]	22	A 5 C[]2	32	A 5 D[]]2	62		72
08 A[]]	23	01 C[]]2	33	01 D[]]2	63	01 C[]]2	73
15 A[]]	24	02 C[]]2	34	02 D[]]2	64	02 C[]]2	74
	25	03 C[]2	35	03 D[]]2	65	03 C[]]2	75
30 A[]]	26	05 C[]]2	36	05 D[]]2	66	05 C[]2	76
	27	07 C[]2	37		67	07 C.]2	77


6.6 NOISE TREATMENT

Servopack uses power transistors in the main circuit. When these transistors are switched, the effect of di/dt or dv/dt (switching noise) may sometimes occur depending on the wiring or grounding method.

The Servopack incorporates CPU. This requires wiring and treatment to prevent noise interference. To reduce switching noise as much as possible, the recommended method of wiring and grounding is shown in Fig. 6.7.

(1) Grounding method (Fig. 6.7)

P Twisted cable'

- Notes: 1. Use wires of 3.5mm² or more for grounding to the case (preferably flat-woven copper wire).
 - 2 Connect line filters observing the precautions as shown in (2) Noise filter installatably

Fig. 6.7 Grounding Method

• Motor frame grounding

When the motor is at the machine side and grounded through the frame, Cf dv/dt current flows from the PWM power through the stray capacity of the motor. To prevent this effect of current, motor ground terminal (D)(motor frame) should be connected to terminal (D) of Servopack. (Terminal (D) of Servopack should be directly grounded.)

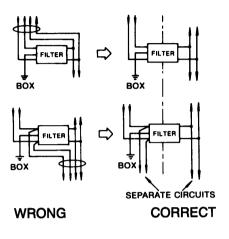
• Metallic Conduit Grounding

When motor wiring is in a metallic conduit, ground the conduit and the terminal box. Perform the following grounding procedures at one point.

(2) Noise filter installation

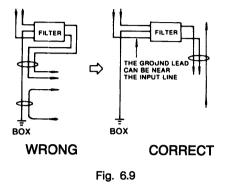
When noise filters are installed to prevent noise from the power line, the block type must be used. The recommended noise filter is shown in Table 5.16. The power supply to peripherals also needs noise filters.

Note


If the noise filter connection is wrong, the effect decreases greatly. Observing the precautions, carefully connect them as shown in Figs. 6.8 to 6.11.

Servopack Type	Applicable	Recommended Noise Filter		Servopack Type	Applicable	Recommended Noise Filter									
CACR-	Noise Filter	Туре	Specifications	CACR-	Noise Filter	Туре	Specifications								
HRA5AAB12 HR01AAB12 HR02AAB12	(CORRECT)		LF-205A	Single-phase 200VAC class. 5A	HR44AB		LF-340	Three-phase 200VAC class, 40A							
HRO3AAB12		LF-210	Single-phase 200VAC class, 10A	HR60AB		LF-350	Three-phase 200VAC class. 50A								
HR05AAB12		(CORRECT)	(CORRECT)	LF-215	Single-phase	HRA5AAB11 HRO1AAB11	(CORRECT)	LF-205A	Single-phase 200VAC class, 5A						
HR10AAB		LF-315	200VAC class. 15A Three-phase	HRO2AAB11	* (WDONO)	LF-210	Single-phase 200VAC class, 10A								
HR15AAB HR03AB		(WRONG)	(WRONG)	(WRONG)	LF-305	200VAC class. 15A Three-phase	HRO3AAB11		LF-215	Single-phase 200VAC class. 15A					
HRO5AB HR10AB					X	X	X	X	X	X	×.	× –	-	200VAC class, 5A Three-phase	HRO5AAB11
HR15AB		LF-315	200VAC class, 15A												
HR20AB		LF-320	Three-phase 200VAC class, 20A		Titer mode by		•								
HR3OAB		LF-330	Three-phase 200VAC class, 30A												

	Table 6.2	Recommended	Noise	Filter
--	-----------	-------------	-------	--------


6.7 NOISE TREATMENT (Cont'd)

(a) Separate the input and output leads.
 (b) Do not bundle or run them in the same duct.

Do not bundle the ground lead with the filter output line or other signal lines or run them in the same duct.

(c) Connect the ground lead singly to the (d) If the control panel contains the filter, box or the ground panel.connect the filter ground and the

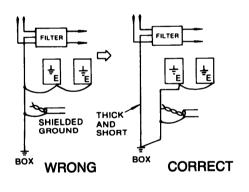


Fig. 6.10

If the control panel contains the filter, connect the filter ground and the equipment ground to the base of the control unit.

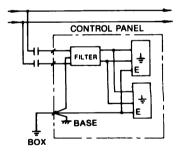


Fig. 6.11

Servopack is operated by commercial power supply (200V).*

Therefore, MCCB or fuse is required to prevent power supply line from grounding or short-line accident and system from burning according to number of used servopack units. (Refer to Table 6.3.)

Fast blow type fuse cannot be used for fusing. Since servopack has capacitor input type power supply, fast blow type fuse may perform fusing when turning power supply on.

* 100V for type HR []]AAB11.

Servopack Type CACR-	Power Supply Capacity Per One Servopack (kVA)	Power Supply Capacity Per One MCCB or Fuse (A)
HRA5AAB12	03	5
HRO1AAB12	0 5	5
HRO2AAB12	0. 75	5
HRO3AAB12	1 0	7
HRO5AAB12	1.4	11
HR10AAB	2.1	8
HR15AAB	3 1	10
НКОЗАВ	0 65	5
HR05AB	1 1	5
HR10AB	2 1	8
HR15AB	3. 1	10
HR20AB	4 1	12
HR3OAB	6 0	18
HR44AB	8 0	24
HRGOAB	11. 0	32
HRA5AAB11	0 3	5
HRO1AAB11	0 5	5
HRO2AAB11	0. 75	8
HRO3AAB11	1 0	11
HRO5AAB11	1.4	15
		<u> </u>

Table 6.3 Power Supply Capacity and MCCB/Fuse Capacity

7 INSTALLATION AND WIRING

7.1 RECEIVING

This motor has been put through severe tests at the factory before shipped. After unpacking, however, check and see the following.

- Its nameplate ratings meet your requirements.
- It has sustained no damage while in transit.
- The output shaft should be hand-rotated freely. However, the brake-mounted motor does not rotate as it is shipped with the shaft locked.
- Fastening bolts and screws are not loose.

If any part of the motor is damaged or lost, immediately notify us giving full details and nameplate data.

7.2 INSTALLATION

7.2.1 Servomotor

AC Servomotor can be installed either horizontally or vertically.

(1) Before mounting

Wash out anticorrosive paint on shaft extension and flange surface with thinner before connecting the motor to the driven machine. See Fig. 7.1.

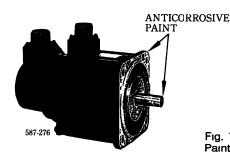


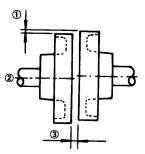
Fig. 71 Anticorrosive Paint to be Removed

(2) Location

Use the motor under the following conditions.

- Indoors
- Free from corrosive and/or explosive gases or liquids
- Ambient temperature: 0 to $+40^{\circ}$ C
- Clean and dry
- Accessible for inspection and cleaning

If the AC servomotor is subject to excessive water or oil droplets, protect the motor with a cover. The motor can withstand a small amount of splashed water or oil.


7.2.1 Servomotor (Cont'd) (3) Environmental conditions Ambient temperature: 0 to $+40^{\circ}$ C Storage temperature: -20 to $+60^{\circ}$ C Humidity: 20% to 80% RH (non-condensing)

(4) Load coupling

True alignment of motor and driven machine is essential to prevent vibration, reduced bearing and coupling life, or shaft and bearing failures.

Use flexible coupling with direct drive. The alignment should be made in accordance with Fig. 7. 2.

When mounting coupling, ease the impact on the shaft and avoid the excessive force on the bearing.

- ① Measure the gap between the straightedge and coupling halves at four equidistant points of the coupling The each reading should not exceed 0.03 mm (0.0012 m.)
- Align the shafts
- (3) Measure the gap between the coupling faces at four equidistant points around the coupling rim with thickness gage The maximum variation between any two readings should not exceed 0.03 mm (0.0012 in)

Fig 7.2 Alignment of Coupling

(5) Allowable bearing load

Avoid both excessive thrust and radial loads to the motor shaft. If unavoidable, never exceed the values in Table 2.9.

When mounting the gear, coupling and pulley, ease the impact on the shaft and avoid excessive force on the bearing. (10G max.)

7.2.2 Servopack

(1) Installation

The Servopack type CACR-HR []][] AAB [][] is rack-mounted type, and type CACR-HR []][] AB is base-mounted type.

(2) Location

• When installed in a panel:

Keep the temperature around Servopack at 55°C or below.

• When installed near a heat source:

Keep the temperature around Servopack below 55℃.

• If subjected to vibration:

Mount the unit on shock absorbing material.

- If corrosive gases are present: Avoid locations where corrosive gases exist as it may cause extensive damage over long use. Especially vulnerable are switching operation of contactors and relays.
- Unfavorable atmospheric conditions: Select a location with minimum exposure to oil, water, hot air, high humidity, excessive dust or metallic particles.

(3) Mounting Direction

(a) Type HR []][] AAB [][]

Mount the Servopack unit vertically on the wall with main terminals being at the bottom to take advantage of natural air convection (Fig. 10.3). Install it with setscrews tightened at four mounting holes in the unit base.

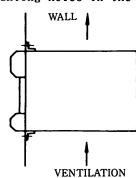
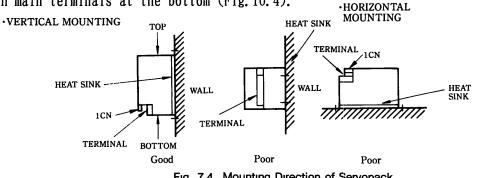



Fig. 7.3 Mounting Direction

Б Туре HR []][] AB

Mount the unit vertically on the wall using the mounting holes (4) on the base plate, with main terminals at the bottom (Fig. 10.4).

7.3 WIRING

7.3.1 Rated Current and Wire Sizes

Tables 7.1 and 7.2 show rated current and wire sizes of Servopack external terminals. Wire types and sizes are selected by environmental condition and current capacity. Wire sizes shown in Table 7.2 are decided under the condition that rated current is supplied at 40°C of ambient temperature and with 3 groups of cable. Cable type is shown in Table 7.3.

7.4 WIRING PRECAUTIONS

The following precautions should be taken for wiring.

(1) For signal lines and PG feedback lines, use twisted cables or multi-core shielded twisted-pair cables (Yaskawa Drawing No. DP8409123, DE8400093 or B9400064).

Cable length is maximum of 3 m for reference input lines and maximum of 20 m for PG feedback lines. Use the shortest possible length.

(2) For ground line, cable should be as heavy as possible to provide ground resistance 100 Ω or less. Make sure to ground at one point. If the motor and machine are insulated, ground the motor.

(3) To prevent malfunction due to noise, take the following precautions:

- Place the noise filter. Servopack and Motionpack as near as possible to each other.
- Make sure to mount a surge suppressor into the relay, magnetic contactor and solenoid coils.
- Run the power line and signal line, holding the distance to 30 cm or more; do not run them in the same duct or in a bundle.
- When the same power is used for Servopack, as for an electric welder or electrical discharge machine or when a high-frequency noise source is present in the vicinity, use filters in the power and input circuits.
- The Servopack uses a switching amplifier, and spurious noise may be present in the signal line.

(4) Remedy for Radio Frequency Interference (R.F.I)

Servopack is not provided with protected from radio frequency interference. If the controller affects radio waves, connect a noise filter to power supply.

(5) The signal line uses cables whose core is extremely fine (0.2 to 0.3 mm²). Avoid using excessive force which may damage these cables.

	Terminal Name	Terminal	Type CACR- (For 200V)										
		Code	Code HRA5AAB12	HRO1AAB12	HRO2AAB12	HRO3AAB12	HRO5AAB12	HR10AAB	HR15AA				
0n-11ne	Main circuit power supply input	R. T*	13	2 5	4 4	65	10 4	8	10				
	Motor connection	U. V, W	07	10	2 0	2 7	36	76	11 7				
	Control power supply input	rt	0 5										
•	Control I/O signal connector	2CN	Max DC 100mA										
Off-line	PG signal connector	3CN	Max DC 100mA 500mA for power supply line										
	Grounding	FG	_										

Table 7.1	Rated Current of	Servopack External	Terminals (A . rms)
-----------	------------------	--------------------	---------------------

	Terminal Name	Terminal			Туре	CACR-		(For 200)	V)	
		Code	HRO3AB	HRO5AB	HR10AB	HR15AB	HR2OAB	HR3OAB	HR44AB	HRGOAE
	Main circuit power supply input	R. S. T	2	5	8	10	12	18	24	32
0n-11ne	Motor connection	U, V, W	30	42	76	11 7	18 8	26 0	33 0	45
	Control power supply input	r.t			I	I	0 5	11		I <u></u> .
	Control I/O signal connector	2CN				Max	DC 100mA			
Off-line	PG signal connector	3CN			Max DC	100mA 50	OmA for po	wer supply	line	
_	Grounding	FG	G							

	Terminal Name	Terminal			Type C	ACR-	(For 100V)	
		Code	HRA5AAB11	HR01AA	AAB11 HRO2AAB11		HRO3AAB11	HRO5AAB11
	Main circuit power supply input	R. T	26	4 5		8.0	11 0	15 0
0n-lıne	Motor connection	U, V, W	12	17		29	36	5 5
Control power supply input		r. t			I.	0. 5		
	Control I/O signal connector	2CN				Max DC 100r	nA	· · · · · · · · · · · · · · · · · · ·
Off-line	PG signal connector	3CN		Max	DC 100	mA 500mA for j	power supply line	
	Grounding	FG				_		···· ···

* R. S. T for types HR10AAB and HR15AAB

			10	1010 7.	~ ***		e (mm)			
	.	Terminal			Туре	CACR-		(For 20	OV)	
	Terminal Name	Code	HRA5AAB12 I	HRO1AAB1	2 HRO2A	AB12	HRO3AAB12	HRO5AAB12	HR10AAB	HR15AAB
	Main circuit power supply input	R. T*		1 25				2 0		3 5
0n-11ne	Motor connection	U. V. W			1	25				35
	Control power supply input	r. t					1 25			
	Control I/O signal connector	2CN						r batched sh		
Off-line	PG signal connector	3CN		core Cable				mild steel s for 2CN. φ	tranded cable	
	Grounding	FG			1	25				20
		Terminal	[Туре	CACR-	. <u>.</u>	(For 20	0V)	
	Terminal Name	Code	HRO3AB HI	ROSAB	HR10AB	HR15A	B HR20A	B HR3OAB	HR44AB	HRGOAB
	Main circuit power supply input	R. S. T	1 25		20		3 5		5 5	80
Dn-line	Motor connection	U. V. W	1 25	1 25 3 5						8 0
-	Control power supply input	rt	1 25							•
-	Control I/O signal connector	2CN		Twiste	-		-	r batched sh	relded lead	
Off-line	PG signal connector	3CN			dimension			for 2CN. Ø		
	Grounding	FG					2 0			
	<u></u>	Terminal	<u>г</u>		Тира	CACR		(For 10	OV)	
	Terminal Name	Code	HRA5AAB11	н	RO1AAB11		IRO2AAB11	HRO3AA		IRO5AAB11
	Main circuit power supply input	R, T		1 25					0	
0n-line	Motor connection	U. V. W				1 25				2 0
-	Control power supply input	r, t		•.			1 25			
	Control I/O signal connector	2CN					-	r batched sh		
Off-line	PG signal connector	3CN		core Cable	U 2mm or dimension			mild steel s for 2CN. φ	tranded cable 11 for 3CN	
2										

Table 7.2 Wire Size (mm²)

Notes: 1. All sizes are above HIV

Grounding

2. Selection condition of wire sizes

FG

Rated current is supplied at 10 $^{\circ}\mathrm{C}$ of ambient temperature and with 3 groups of leads

1 25

* R.S.T for types HR 10AAB and 15AAB

	Туре	Allowable Temperature
Code	Name	<u>°</u>
PVC	Vinyl sheathed lead	_
IV	600V Vinyl sheathed lead	60
HIV	Heat-resistant vinyl sheathed lead	75

Table 7.3 Wire Type

8 PERIPHERAL DEVICES

8.1 COMBINATION OF PERIPHERAL DEVICES

Servopack Type CACR-	AC Servomotor Type USAMED-	Power Capacity per Servopack ^{*1} KVA	Current Capacity Per MCCB of Fuse A	Applicable Noise Filter	Recomme Noise F Type		Power ON/OFF Magnetic Contactor
HRO3AAB12	03B []] 1	1.0	7		LF-215	15 A	YASKAWA Type
HR10AAB	06B []] 1 09B []] 2	2. 1	8		LF-315	15A	HI-15E₅ (30A) or equivalent
HR15AAB	12B []] 2	3.1	10	Good			
HR03AB	03B []] 1	0.65	5	omtwo	LF-305	5A	
HR10AB	06B []] 1	1.5	8	Ţ	LF-310	10 A	
NKI UAD	09B []] 2	2.1	8		LF-315	15A	
HR15AB	12B []] 2	3.1	10	Poor	Lr-315	IJA	
HR20AB	20B []] 2	4.1	12		LF-320	20A	YASKAWA Type HI-18E (35A)
HR30AB	30B []] 2	6.0	18		LF-330	30A	or equivalent
HR40AB	44B []] 2	8.0	24]	LF-340	40A	
HRGOAB	USA MKD- 60B []] 2	11	32		LF-350	50A	YASKAWA Type HI-25E (50A) or equivalent

Table 8.1 Combination of Servopack, Servomotor M Series and Peripheral Devices

*1 Values at rated load

*2 Made by Tokin Corp.

E.

Servopack Type	AC Servomotor	Power Capacity per	Current Capacity per MCCB	Applicable Noise	Recomm Noise	ended Filter	Power ON/OFF	
CACR-	Type USAFED-	Servopack KVA	of Fuse A	Filter	Туре	200VAC class	Magnetic Contactor	
HRO3AAB12	02C []] 1	1.0	7		LF-210	10A	YASKAWA Type	
IIKOSAAD12	03C []] 1	1.0	1				HI-15E₅ (30A) or equivalent	
HR05AAB12	05C []] 1	1.4	11		LF-215	15A		
HR10AAB	09C []] 1	2. 1	8	Good	LF-315	154		
HR15AAB	13C []] 2	3.1	10	om_mo	LF-313	15A		
HRO3AB	02C []] 1	0.65	5	=	LF-305	5A	YASKAWA Type	
IIKOJAD	03C []] 1	0.65	J		FI202	JA	HI-18E (35A) or equivalent	
HR05AB	05C []] 1	1.1	5	Poor	LF-305	5A		
HR10AB	09C []] 1	2.1	8	×	10.915	164		
HR15AB	13C []] 2	3.1	10		LF-315	15A		
HR20AB	20C []] 2	4.1	12		LF-320	20A		
HR30AB	30C []] 2	6.0	18		LF-330	30A		
HR44AB	44C []] 2	8.0	24		LF-340	40A		

Table 8.2 Combination of Servopack, Servomotor F Series and Peripheral Devices

Table 8.3 Combination of Servopack, Servomotor G Series and Peripheral Devices

Servopack Type	AC Servomotor	Power Capacity per	Current Capacity per MCCB	Applicable Noise	Recomm Noise	nended Filter	Power ON/OFF	
CACR-	Type USAFED-	Servopack KVA	of Fuse A	Filter	Туре	200VAC class	Magnetic Contactor	
HR03AAB12	02A []] 1	1.0	7		LF-210	104	YASKAWA Type	
	03A []] 1	1.0	1			10A	HI-15E₅ (30A) or equivalent	
HR05AAB12	05A []] 1	1.4	11		LF-215	15A		
HR10AAB	09A []] 1	2.1	8	Good		154		
HR15AAB	13A []] 2	3.1	10	مسم	LF-315	15 A		
HRO3AB	02A []] 2	0. 65	5	Ţ	18 205	F 1		
IIIOJAD	03A []] 1				LF-305	5A		
HR05AB	05A []] 1	1.1	5	Poor	LF-305	5A	YASKAWA Type	
HR10AB	09A [] 1	2.1	8		LF-315	154	HI-18E (35A) or equivalent	
HR15AB	13A []] 2	3.1	10		LF-315	15 A		
HR20AB	20A [] 2	4.1	12		LF-320	20A		
HR30AB	30A []] 2	6.0	18		LF-330	30A		
HR44AB	44A [] 2	8.0	24		LF-340	40A		

Servopack Type	AC Servomotor Type	Power Capacity per	Cuilent Capacity per MCCB	Applicable Noise	Recomm Noise	ended Filter	Powei ON/OFF	
CACR-	USADED-	Servopack KVA	of Fuse A	Filter	Туре	200VAC class	Magnetic Contactor	
HR05AAB12	05E []]	1.4	11		LF-215	15A	YASKAWA Type	
HR15AAB	10E []]	3, 1	10	Good	LF-315	15A	HI-15E₅ (30A) or equivalent	
HR05AB	05E []]	1.5	8		LF-310	10A		
HR15AB	10E []]	3.1	10	Poor	LF-315	15 A	,	
HR20AB	15E []]	4.1	12		LF-320	20A	YASKAWA Type	
HR30AB	22E []]	6.0	18		LF-330	30A	HI-18 (35A) or equivalent	
HR44AB	37E []]	8.0	24	1	LF-340	40A		

Table 8.4 Combination of Servopack, Servomotor D Series and Peripheral Devices

Table 8.5 Combination of Servopack, Servomotor S Series and Peripheral Devices

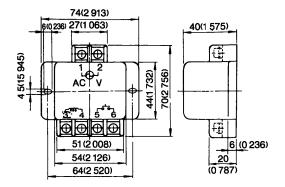
Seivopack Type	AC Servomotor	Power Capacity per	Cuirent Capacity	Applicable	Recomme Noise F		Powe1 ON/OFF
CACR-	Type USASED-	Servopack KVA	per MCCB of Fuse A	Noise Filter	Туре	200VAC class	Magnetic Contactoi
HR02AAB12	02A []]	0.75	5		LF-205A	5A	YASKAWA Type
HR03AAB12	03A []]	1.0	7		LF-210	10A	HI-15E, (30A) or equivalent
HR05AAB12	05A []]	1.4	11		LF-215	15 A	
HR10AAB	08A []]	2.1	8	Good		154	
HR15AAB	15A []]	3. 1	10	om_mo Ę	LF-315	15A	
HDOOAD	02A []]	0.05	-	Ŧ			
HRO3AB	03A []]	0.65	5	Poor	LF-305	5A	
HR05AB	05A []]	1.1	5				
HR10AB	08A []]	2.1	8	/#\		1 = 4	
HR15AB	15A []]	3.1	10		LF-315	15A	
HR30AB	30A []]	6. 0	18		LF-330	30A	YASKAWA Type HI-18E (35A) or equivalent

Servopack Type	AC Servomotor Type	Power Capacity	Current Capacity per MCCB	Applicable Noise	Recomme Noise F		Power ON/OFF
CACR-	USARED-	pei Servopack KVA	of Fuse A	Filter	Туре	200VAC class	Magnetic Contactor
HRA5AAB12	A5C []] 2	0.3					YASKAWA Type
HR01AAB12	01C []] 2	0.5	5		LF-205A	5 A	HI-15E₅ (30A) or equivalent
HR02AAB12	03C []] 2	0. 75	1	Good			
HR03AAB12	03C []] 2	1.0	7	om_mo Ţ	LF-210	10A	
HR05AAB12	05C []] 2	1.4	11	÷	LF-215	15A	
HR10AAB	07C []] 2	2.1	8		LF-315	10A	
HRA5AAB11	A5D []] 2	0.3	5	Poor		E A	
HR01AAB11	01D []] 2	0.5	J	×	LF-205A	5 A	
HR02AAB11	02D []] 2	0.75	8		LF-210	10 A	
HRO3AAB11	03D []] 2	1.0	11		LF-215	15 A	
HR05AAB11	05D []] 2	1.4	15		LF-220	20A	

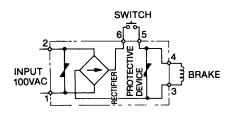
Table 8.6 Combination of Servopack, Servomotor R Series and Peripheral Devices

Table 87 Combination of Servopack, Servomotor P Series and Peripheral Devices

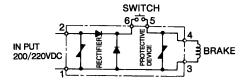
Servopack Type	AC Servomotor	Power Capacity	Current Capacity per MCCB	Applıcable Noise	Recomme Noise F		Power ON/OFF		
CACR-	Type USAPEN-	per Servopack KVA	of Fuse A	Filter	Туре	200VAC class	Magnetic Contactor		
HR01AAB12	USAPEM-01C []] 2	0.5	E			C 1	YASKAWA Type		
HR02AAB12	USAPEM-02C []] 2	0. 75	5	Good	LF-205A	5 A	HI-15E ₅ (30A) or equivalent		
HRO3AAB12	USAPEM-03C []] 2	1. 0	7	1 Poor	LF-210	10 A			
HR05AAB12	USAPEM-05C []] 2	1.4	11		LS-215	15A			
HR10AAB	USAPEM-10C []] 2	2.1	8		LF-315	10A			


8.2 BRAKE POWER SUPPLY

There are two types of brake power supplies for M, F, G and D series and for S, R and P series. Select one suitable for the applicable motor.


(a) Power supply unit for M, F, G, D series (made by Ogura Clutch Co., Ltd.)

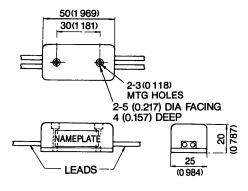
- Input 100VAC, output 90VDC, Max. 0.4A (type OPR 109F)
- Input 200VAC, output 90VDC, Max. 0.4A (type OPR 109A)


Dimensions in mm (inches)

Type OPR109F Circuit Diagram

Type OPR109A Circuit Diagram

Notes

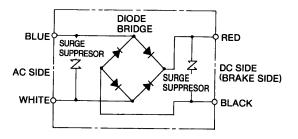

- 1 Do not short-circuit between output terminal Nos 3 and 4
- 2 The open/close value of the contact used for Nos 5 and 6 is 5 to 10 times the rated current of the brake used Direct current open/close contacts must be used
- 3 Insert a fuse in the input or output side to protect the power supply

(b) Power supply unit for S, P, R series (made by Tokushu Seiko Co., Ltd.)

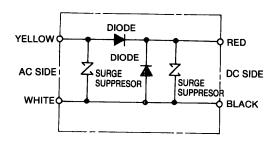
• Input 100VAC, output 90VDC, Max. 0.2ADC (DP8401002-2)

• Input 200VAC, output 90VDC, Max. 0.2ADC (DP8401002-1)

Dimensions in mm (inches)



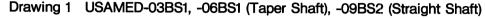
Lead Length 500mm for each (19.69 inches.)
 Lead Color Distinction

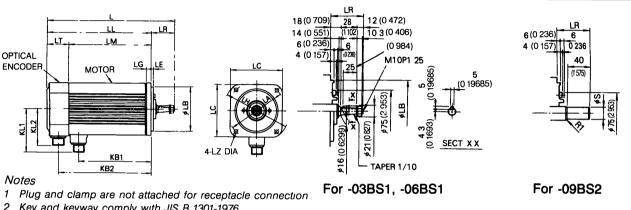

AC Inp	ut Side	Brake
100V	200V	Side
Blue White	Yellow White	Red Black

Max Ambient Temperature 60° C

100 VAC: Internal Circuit

200 VAC · Internal Circuit

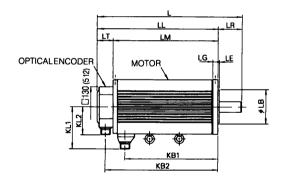

Note Close or open the brake power supply circuit on DC side If AC side is operated, brake time becomes extended

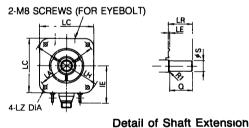

9 DIMENSIONS

9.1 AC SERVOMOTOR WITH ABSOLUTE ENCODER

M Series (1)

Dimensions in mm (inches)

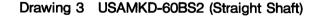


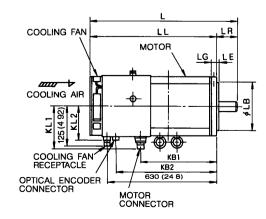

Key and keyway comply with JIS B 1301-1976

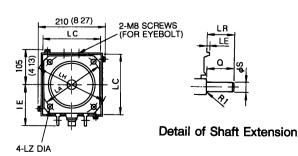
(Parallel key, keyway common class)

3 Motor should be mounted with connectors down

Drawing 2 USAMED-12BS2 to -44BS2 (Straight Shaft)




Detail of Shaft Extension


Notes

1 Plug and clamp are not attached for receptacle connection

2 Motor should be mounted with connectors down

Notes

Plug and clamp are not attached for receptacle connection

2 Motor should be mounted with connectors down

87 -

AC Servomotor	Dwg			LM	LR	LT	KB1	KB2	IE	KL1	KL2			Fk	ange	Surfa	ace			Shaft Exte	ension	Approx
Type USAMED-*	No							IND2	"-			LA	LE	3	LC	LE	LG	LH	ιz	S	Q	Weight kg (lb)
03BS1*		277 (1091)	219 (863)	150 (591)	58 (2 <i>2</i> 8)	69 (2 72)	127 (50)	177 (697)		109 (429)	92 (362)	145 (571)	110 (43307.	0035	130 (512)	6 (024)	12 (0 47)	165 (65)	9 (035)	_	-	9 (198)
06BS1 [†]	1	334 (13 15)	276 (1087)		58 (2 28)	69 (272)	184 (724)	234 (921)	_	109 (429)	92 (362)	145	110	0005 -00014)	130	6	12 (047)	165 (65)	9 (035)	_	-	14 (30 9)
09BS2*		403 (1587)	345 (1359)	276 (1087)	58 (228)	69 (272)	253 (996)	303 (11 93)	—	109 (429)	92 (362)	145 (571)	110	0.035	130 (512)	6 (024)	12 (047)	165 (65)	9 (035)	22 -0013 (0.8661 -00005)	40 (1575)	20 (441)
12BS2*		343 (13 49)	264 (1038)	211 (830)	79 (311)	53 (208)	171 (673)	237 (933)	—	139 (547)	92 (362)	200 (7 87)	14 5	-0.025 -0.001)	180 (7 08)	32 (013)	18 (071)	230 (91)	135	35 -001	76 (2992)	22 (485)
20BS2	2	401 (15 79)	322 (1268)	269 (1060)	79 (311)	53 (208)	229 (901)	295 (1161)	123 (484)	139 (547)	92 (362)	200 (787)		0.025 -0.001)	180 (708)	32 (013)	18 (071)	230 (91)	135 (053)	35 ^{-00:}	76 (2992)	29 (63 9)
30BS2	٤	486 (19 13)	407 (1602)	354 (1394)	79 (311)	53 (208)	314 (1236)	380 (1496)	123 (484)	139 (547)	92 (362)		1143 .	0.025	180 (708)	32 (013)	18 (071)	230 (91)	135 (053)	35 -001 (13779 -00004)	76 (2992)	41 (90 4)
44BS2		687 (27 04)	577 (2271)	524 (2063)	110 (433)	53 (208)	476 (1874)	550 (21 65)	124 (488)	149 (587)		200 (7 87)	1143 _	-0025	180 (708)	32 (013)	18 (071)	230 (91)	13 5 (053)	42 -0016 (16535 -00006)	110	66 (145 5)
60BS2	3	820 (32 28)	710 (2795)	—	110 (433)	-	482 (1898)	587 (2311)	124 (488)	150 (591)		200	1143	0025 0001)	180 (708)	32 (013)	18 (071)	230 (91)	135	42 -0016	110	71 (156 5)

*For servomotor of 6kW, 'K" is used instead of "E", because of externally fan-cooled type † Not provided with an eyebolt

CONNECTOR TYPES

AC Servomotor		Motor Conn	ector Types		Absolute Encoder Connector Types							
Type USAMED-	Receptacle	L-type Plug	Straight Plug	Cable Clamp	Receptacle	L-type Plug	Straight Plug	Cable Clamp				
03BS1 06BS1 09BS2	MS3102 A18-10P	MS3108 B18-10S	MS3106 B18-10S	MS3057 -10A								
12BS2 20BS2 30BS2	MS3102 A22-22P	MS3108 B22-22S	MS3106 B22-22S	MS3057 -12A	MS3102 A20-29P	MS3108 B20-29S	MS3106 B20-29S	MS3057 -12A				
44BS2	MS3102	MS3108	MS3106	MS3057	120 201	020 200	D20-200	-12A				
USAMKD- 60BS2*	A32-17P	B32-17S	B32-17S	-20A								

* Cooling fan receptacle MS 3102 A 14 S-6P Cooling fan plug MS 3108 B 14 S-6S Cooling fan clamp MS 3057-6 A

MECHANICAL SPECIFICATIONS

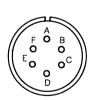
Accuracy (T R)	Reference Diagram	
Flange surface perpendicular to shaft (A)	0 04 (0 0016)	
Flange diameter concentric to shaft B	0 04 (0 0016)	÷
Shaft run out ©	0 02 (0 0008) 0 04 [†] (0 0016 [†])	᠂᠆ᢔᢩ᠕᠁

★T | R (Total Indicator Reading) † Accuracy for motor types USAMED-44BS2, USAMKD-60BS2

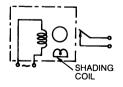
CONNECTOR SPECIFICATIONS

Motor Receptacle

Absolute Encoder Receptacle

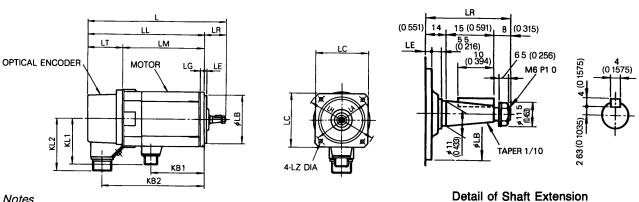

Mo ^M o ^A o
$ \begin{pmatrix} K & o & o & D \\ o & s & R & o \\ J & o & o & E \end{pmatrix} $
\\`ë§ė//

B Phase V
C Phase W
D Ground


B Channel Ā output L - C Channel B output M - D Channel B output N - E Channel C output P - F Channel C output R For reset	A
D Channel B output N E Channel C output P	в
E Channel C output P	С
	D
E Channel Courtout B For reast	E
F Channel C output R For reset	F
G 0V S 0V (battery)	G
H +5VDC T 36V (battery)	Н
J Frame ground	J

Servomotors with a brake or a modified shaft extension are also available

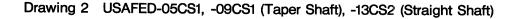
FAN TERMINAL CONNECTION (For only 60BS2)

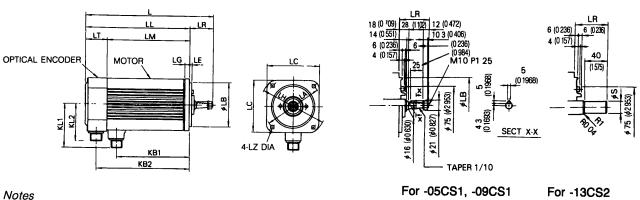

Α	Fan motor
В	Fan motor
С	_
D	Alarm terminal
Ε	Alarm terminal
F	_

Alarm Contact OFF at normal fan rotation ON at 1800±200 r/min or less (ON during 3 seconds at start-up) Contact Capacity Max resistive load 110V, 03A

(2) F Series

Drawing 1 USAFED-02CS1, -03CS1 (Taper Shaft)

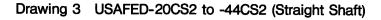

Notes

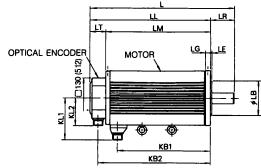

1 Plug and clamp are not attached for receptacle connection

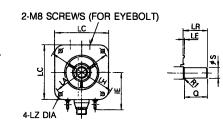
2 Key and keyway comply with JIS B 1301-1976

(Parallel key, keyway common class)

3 Motor should be mounted with connectors down


Detail of Shaft Extension


1 Plug and clamp are not attached for receptacle connection


2 Key and keyway comply with JIS B 1301-1976

(Parallel key, keyway common class)

3 Motor should be mounted with connectors down

Detail of Shaft Extension

Notes

1 Plug and clamp are not attached for receptacle connection

2 Motor should be mounted with connectors down

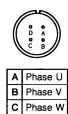
AC Servomotor	Dwg	L	LL	LM	LR	LT	КВІ	KB2	IE	KL1	KL2		FI	ange	Surfa	ace			Shaft Exte	nsion	Approx
Type USAFED-	No	L	LL				NDI	ND2				LA	LB	LC	LE	LG	LH	١z	S	Q	Weight kg (lb)
02CS1	1	234 (921)	197 (775)	137 (539)	37 (1 46)	60 (236)	90 (3 54)	172 (677)	_	76 (3 43)	89 (299)	100 (394)	80 -9030 (31496 00012)	90 (354)	4 (0 157)	7 (0 276)	120 (472)	66 (026)		_	55 (77)
03CS1		280 (11 02)	243 (956)	183 (72)	37 (1 46)	60 (2 36)	136 (535)	218 (858)	_	76 (3 43)	89 (299)	100 (394)	80 -0030 (31496 00012)	90 (354)	4 (0 157)	7 (0 276)	120 (472)	66 (026)	-	_	65 (143)
05CS1		277 (1090)	219 (862)	150 (591)	58 (2 28)	69 (272)	127 (50)	177 (697)	-	109 (429)	92 (362)	145 (571)	110 -0035 (43307 -00074)	130 (512)	6 (024)	12 (047)	165 (65)	9 (035)		_	85 (187)
09CS1	2	334 (1314)	276 (1086)	207 (8 16)	58 (2 28)	69 (2 72)	184 (7 24)	234 (921)	-	109 (429)	92 (362)	145 (571)	110 -0.035 (43307 -0.0014)	130 (512)	6 (0 24)	12 (0 47)	165 (65)	9 (035)	-	_	13 (287)
13CS2		403 (1587)	345 (1359)	276 (1087)	58 (228)	69 (2 72)	253 (996)	303 (11 93)	_	109 (429)	92 (362)	145 (571)	110 -0035 (43307 -0004)	130 (512)	6 (024)	12 (0 47)	165 (65)	9 (035)	22 -0013 (0.8661 00005)	40 (157)	20 (441)
20CS2		343 (13 5)	264 (10 39)	211 (83)	79 (311)	53 (209)	171 (673)	237 (933)	—	139 (5 47)	92 (362)	200 (788)	1143 -0025 (45 -0001)	180 (7 09)	32 (013)	18 (071)	230 (906)		35 ^{+0.01} (1 3379 ^{-0.0004})	76 (299)	22 (485)
30CS2	3	401 (15 79)	322 (1268)	269 (10 59)	79 (311)	53 (209)	229 (902)	295 (11 61)	123 (485)	139 (5 47)	92 (362)	200 (788)	1143 -0.025 (45 -0.007)	180 (7 09)	32 (013)	18 (071)	230 (906)	13 5 (0 53)	35 -001 (1 3379 -0.0004)	76 (299)	29 (63 9)
44CS2		486 (1914)	407 (16 02)	354 (1393)	79 (3 11)	53 (209)	314 (1236)	380 (1496)		139 (5 47)	92 (362)	200 (788)	1143 -0025 (45 -0001)	180 (7 09)	32 (013)	18 (071)	230 (906)		35 ⁻⁰⁰ (1 3379 ⁻⁰⁰⁰⁰⁴)	76 (299)	41 (904)

* Not provided with an eyebolt

CONNECTOR TYPES

AC Servomotor		Motor Conn	ector Types		Absolute Encoder Connector Types						
Type USAFED-	Receptacle	L-type Plug	Straight Plug	Cable Clamp	Receptacle	L-type Plug	Straight Plug	Cable Clamp			
02CS1 03CS1	MS3102 A14S-2P	MS3108 B14S-2S	MS3106 B14S-2S	MS3057 -6A							
05CS1 09CS1 13CS2	MS3102 A18-10P	MS3108 B18-10S	MS3106 B18-10S	MS3057 -10A	MS3102 A20-29P	MS3108 B20-29S	MS3106 B20-29S	MS3057 -12A			
20CS2 30CS2 44CS2	MS3102 A22-22P	MS3108 B22-22S	MS3106 B22-22S	MS3057 -12A							

MECHANICAL SPECIFICATIONS


Accuracy (T R	Accuracy (T R)*								
Flange surface perpendicular to shaft (A)	0 04 (0 0016)								
Flange diameter concentric to shaft (B)	0 04 (0 0016)								
Shaft run out ©	0 02 (0 0008)	\ [*] , <i>,,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,							

*T I R (Total Indicator Reading)

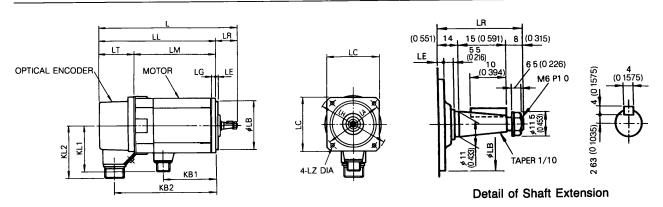
CONNECTOR SPECIFICATIONS

Motor Receptacle

Absolute Encoder Receptacle

Ground

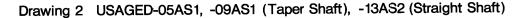
D

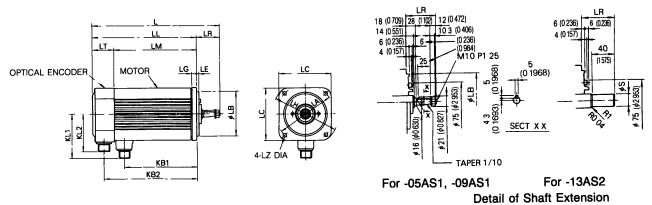


Α	Channel A output	κ	_
в	Channel A output	L	_
С	Channel B output	м	—
D	Channel B output	Ν	_
Ε	Channel C output	Ρ	_
F	Channel C output	R	For reset
G	0V	S	0V (battery)
Н	+ 5VDC	Т	36V (battery)
J	Frame ground		_

Servomotors with a brake or a modified shaft extension are also available

(3) G Series

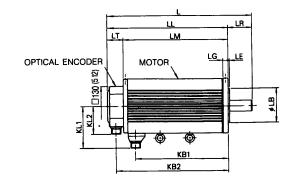

Drawing 1 USAGED-02AS1, -03AS1 (Taper Shaft)

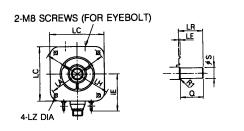


Notes

1 Plug and clamp are not attached for receptacle connection

- 2 Key and keyway comply with JIS B 1301-1976
- (Parallel key, keyway common class)
- 3 Motor should be mounted with connectors down




Notes

1 Plug and clamp are not attached for receptacle connection

- 2 Key and keyway comply with JIS B 1301-1976 (Parallel key, keyway common class)
- 3 Motor should be mounted with connectors down

Drawing 3 USAGED-20AS2 to -44AS2 (Straight Shaft)

Detail of Shaft Extension

Notes

1 Plug and clamp are not attached for receptacle connection

2 Motor should be mounted with connectors down

AC Servomotor	Dwg	L	ш	LM	LR	LT	KBI	KB2	IE	KL1	KL2		F	lange	Surfa	ace			Shaft Exte	ension	
Type USAGED-	No.							NOZ				LA	LB	LC	LE	LG	LH	LZ	S	Q	Weight kg (lb)
02AS1*	1	234 (921)	197 (775)	137 (539)	37 (146)	60 (236)	90 (354)	172 (677)	_	76 (3 43)	89 (299)	100 (394)	80 -0.030 (31496 -0.0012)	90 (354)	4 (0 157)	7 (0 276)	120 (472)	66 (026)	-	-	55 (77)
03AS1*		280 (11 02)		183 (72)	37 (146)	60 (2 36)	136 (535)	218 (858)	-	76 (3 43)	89 (299)	100		90	4 (0 157)	7 (0 276)	120 (472)	66 (026)	-	-	65 (143)
05AS1*		277 (1090)	219 (862)	150 (591)	58 (228)	69 (2 72)	127 (50)	177 (697)	_	109 (429)	92 (362)	145 (571)	110 _0 (4 3307 _0 00014)	130 (512)	6 (024)	12 (047)	165 (65)	9 (035)	_	-	85 (187)
09AS1*	2	334 (1314)	276 (1086)	207 (8 16)	58 (228)	69 (272)	184 (724)	234 (921)	-	109 (429)	92 (362)	145	110 _0 (43307 _0 (0014)	130 (512)	6 (024)	12 (047)	165 (65)	9 (035)	_	-	13 (287)
13AS2*	_	403 (1587)		276 (1087)	58 (228)	69 (272)	253 (996)	303 (11 93)	-	109 (429)	92 (362)	145	110 _0 (43307 _0 (0014)		6 (024)	12 (047)	165 (65)	9 (035)	22 _0013 (0.8661 _00005)	40 (157)	20 (441)
20AS2*		343 (135)	264 (10 39)	211 (83)	79 (311)	53 (209)	171 (673)	237 (933)	-	139 (547)	92 (362)	200 (788)	1143 _0025 (45 _0001)	180 (709)	32 (013)	18 (071)	230 (906)	135		76	22 (48 5)
30AS2	3	401 (15 79)	322 (1268)	269 (1059)	79 (311)	53 (209)	229 (902)	295 (11 61)	123 (485)	139 (5 47)	92 (362)	200 (788)	1143 -0025 (45 -0001)	180 (7 09)	32 (013)	18 (071)	230 (906)	135	35 ^{-0.01} (1 3379 ^{-0.0004})	76 (299)	29 (63 9)
44AS2		486 (1914)	407 (16 02)	354 (13 93)	79 (311)	53 (209)	314 (1236)	380 (1496)	123 (485)	139 (547)	92 (362)	200 (788)	1143 -0005	180 (7 09)	32 (013)	18 (071)	230	135	35 ±0.01 (1 3379 -0.0004)	76 (299)	41 (904)

*Not provided with an eyebolt

CONNECTOR TYPES

AC Servomotor		Motor Conr	nector Types		Absolute Encoder Connector Types						
Type USAGED-	Receptacle	L-type Plug	Straight Plug	Cable Clamp	Receptacle	L-type Plug	Straight Plug	Cable Clamp			
02AS1 03AS1	MS3102 A14S-2P	MS3108 A14S-2S	MS3106 B14S-2S	MS3057 -6A							
05AS1 09AS1 13AS2	MS3102 A18-10P	MS3108 B18-10S	MS3106 B18-10S	MS3057 -10A	MS3102 A20-29P	MS3108 B20-29S	MS3106 B20-29S	MS3057 -12A			
20AS2 30AS2 44AS2	MS3102 A22-22P	MS3108 B22-22S	MS3106 B22-22S	MS3057 -12A		520-200	520-230	-124			

MECHANICAL SPECIFICATIONS

Accuracy (T. I R))*	Reference Diagram
Flange surface perpendicular to shaft (A)	0 04 (0 0016)	
Flange diameter concentric to shaft B	0 04 (0 0016)	
Shaft run out ©	0 02 (0 0008)	v_[^t ®] <i>***</i>

Servomotors with a brake or a modified shaft extension are also available

*T I R (Total Indicator Reading)

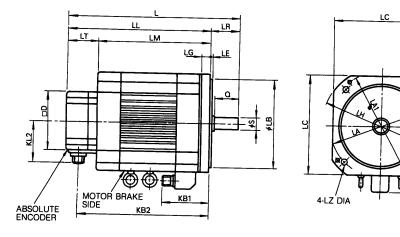
CONNECTOR SPECIFICATIONS

Motor Receptacle

Absolute Encoder Receptacle

A	Phase U
в	Phase V
С	Phase W
D	Ground

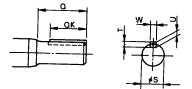
A output	ĸ


A	Channel A output	ĸ	_
в	Channel A output	L	
С	Channel B output	м	_
D	Channel B output	Ν	-
Е	Channel C output	Р	_
F	Channel C output	R	For reset
G	0V	s	0V (battery)
н	+5VDC	Т	36V (battery)
J	Frame ground	-	_

(4) D Series

Ð

4-LZ1 DIA


Drawing 1 USADED-05EW to -37EW

Notes

- 1 Absolute encoder is used as a detector
- 2 Plug and clamp are not attached for receptacle connection
- 3 Motor should be mounted with connectors down

Straight Shaft/With Key

Detail of Shaft Extension

Notes Key and keyway comply with JIS B 1301-1976 (parallel key, keyway common class)

AC Servomotor		Sha	ift Exte	nsion		
Type USADED-	S	Q	QK	Т	U	w
05EW2K	$\begin{array}{c} 22 & - \begin{smallmatrix} 0 \\ 0 \\ 0 \\ 8661 \\ - \begin{smallmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	50 (1 97)	45 (1 77)	6 (0236)	35 (0138)	6 (02362)
10EW2K	22 0021 (0 8661 -00008)	50 (1 97)	45 (1 77)	6 (0236)	35 (0138)	6 (02362)
15EW2K	$\begin{array}{rrr} 28 & - \overset{0}{_{-0013}} \\ (11024 & - \overset{0}{_{-00005}}) \end{array}$	50 (1 97)	45 (177)	7 (0275)	4 (0157)	8 (03149)
22EW2K.	$\begin{array}{ccc} 28 & - \overset{0}{_{0013}} \\ (1\ 1024 & - \overset{0}{_{00005}}) \end{array}$	50 (1 97)	45 (177)	7 (0275)	4 (0157)	8 (03149)
37EW2k 🗆	$\begin{array}{ccc} 32 & - \overset{0}{_{0016}} \\ (12598 - \overset{0}{_{00006}}) \end{array}$	60 (2 36)	50 (1 97)	8 (0315)	5 (0197)	10 (03937)

AC Servomotor			LM	LR		LT KB1 KB2 IE KL1 KL2							Flange Surface Shaft Extension							nsion	Approx Weight		
Type USADED-		LL	Livi				ND2	IC	NLI	KL2 D	LA	LA1	LB	LC	LE	LG	LH	ιz	LZ1	S	Q	kg (lb)	
05EW20E*	237 (933)	182 (717)	138 (544)	55 (216)	44 (173)	90 (354)	158 (622)		138 (543)	93 (366)	130 (512)	200 (7 87)	-	1143 0 ₂₂₅ (45 0 ₀₀₇)	180 (7 09)	32 (0126)	12 (0 472)	230 (906)	13 5 (053)	-	22 0.0.3 (0.8661 0.0005)	50 (197)	17 (16) [375 (353)
10EW20E*	257 (10 12)	202 (796)	158 (623)	55 (216)	44 (173)	90 (354)	178 (70)	-	138 (543)	93 (366)	130 (512)	200 (7 87)		1143 - 0.025 (45 - 0.007)	180 (7 09)	32 (0126)	12 (0472)	230 (906)	13 5 (053)	—	22 _0003 (0.8661 0.0005)	50 (197)	19 (18) [41 9 (397)]
15EW20E	270 (1063)	217 (847)	171 (666)	55 (216)	46 (181)	95 (374)	191 (752)	142 (559)	160 (63)	93 (366)	130 (512)	235 (925)	250 (984)	200 _0.046 (7874 _0.0078)	220 (8 <i>6</i> 6)	4 (0157)	16 (063)	270 (1063)		M8	28 (1 1024	50 (197)	30 (27) [662 (595)]
22EW20E	285 (1122)	232 (906)	186 (725)	55 (216)	46 (181)	95 (374)	206 (811)	142 (559)	160 (63)	93 (366)	130 (512)	235 (925)	250 (984)	200 –0.046 (7874 –0.00%)	220 (866)	4 (0157)	16 (063)	270 (1063)	13 5 (053)	М8	28 _0 (1 1024 _0 00005)	50 (197)	32 (29) [706 (639)]
37EW20E	345 (1358)	282 (11 02)	236 (921)	65 (256)	46 (181)	95 (374)	256 (1008)	142 (559)	160 (63)	93 (366)	130 (512)	235 (925)		200 – 0 0 – 0 046 (7874 – 0 00*8)	220 (866)	4 (0157)	16 (063)	270 (1063)	13 5 (053)	М8	32 -0.016 (1 2598 -0.0006)	60 (2 36)	39 (36) [86 (794)]

* Not provided with an eyebolt

Dimensions above are applied for servomotor w/wo holding brake as well Notes Approx weight in [] is for servomotor without holding brake

CONNECTOR TYPES

AC Servomotor		Motor Conn	ector Types		Absolute Encoder Connector Types						
Type USADED-	Receptacle L-type Plug		Straight Plug	Cable Clamp	Receptacle	L-type Plug	Straight Plug	Cable Clamp			
05EW2	MS3102 A20-15P	MS3108 B20-15S	MS3106 B20-15S	MS3057 -12A	MS3102	MS3108	MS3106	MS3057			
15EW2 22EW2 37EW2	MS3102 A24-10P	MS3108 B24-10S	MS3106 B24-10S	MS3057 -16A	A20-29P	B20-29S	B20-29S	-12A			

MECHANICAL SPECIFICATIONS

Accuracy (T R	Reference Diagram	
Flange surface perpendicular to shaft (A)	0 04 (0 0016) 0 06* (0 0026*)	
Flange diameter concentric to shaft B	0 04 (0 0016)	
Shaft run out ©	0 02 (0 0008)	

* T I R (Total Indicator Reading) † Accuracy for motor types USADED-15EW -22EW, and -37EW

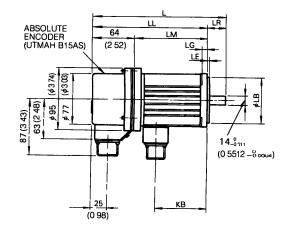
CONNECTOR SPECIFICATIONS

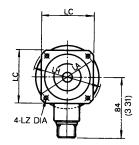
Motor Receptacle

((в	
Α	Phase U	Ε	Bra

A	Phase U	Ε	Brake term
в	Phase V	F	Brake term
С	Phase W	G	-
D	Ground		

When not provided with holding brake, E and F are not used

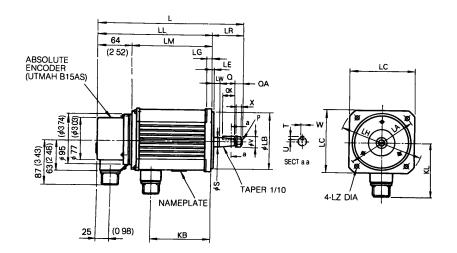

Absolute Encoder Receptacle


Α	Channel A output	κ	Channel S output
в	Channel A output	L	Channel S output
С	Channel B output	м	-
D	Channel B output	Ν	
Е	Channel C output	Ρ	—
F	Channel C output	R	For reset
G	0V	s	0V (battery)
н	+ 5VDC	Т	3 6V (battery)
J	Frame ground	—	—
-			

Servomotors with a brake or a modified shaft extension are also available

(5) S series

Drawing 1 USASEM-03AS2, -05AS2 (Straight Shaft)



Notes

- 1 Plug and clamp are not attached for receptacle connection
- 2 Motor should be mounted with connectors down

Drawing 2 USASEM-08AS1, -15AS1, -30AS1 (Taper Shaft)

Notes

- 1 Plug and clamp are not attached for receptacle connection
- 2 Key and keyway comply with JIS B 1301-1976
- (Parallel key, keyway common class)
- 3 Motor should be mounted with connectors down

AC Servomotor	Dwg			Flange Surface							Approx				
Type USASEM-	No.	L	ш	LM	LR	кв	KB KL	LA	LB	LC	LE	LG	LH	LZ	Weight kg (lb)
03AS2	1	208 (8 19)	178 (701)	114 (4 49)	30 (1 18)	79 (311)	_	90 (3 54)	70 0.000 2 7559 -0.0012	80 (3 15)	3 (0118)	8 (031)	105 (4 13)	6 (0 236)	32 (71)
05AS2	1	230 (901)	200 (7 83)	136 (531)	30 (1 18)	101 (398)	-	90 (354)	70 -0.000 2 7559 -0.0012	80 (3 15)	3 (0 118)	8 (031)	105 (413)	6 (0 236)	38 (84)
08AS1	2	274 (1079)	216 (851)	152 (599)	58 (228)	115 (453)	102 (402)	130 (512)	110 -0035 4 3307 -00014	120 (472)	3 (0 118)	10 (039)	155 (61)	9 (035)	63 (139)
15AS1	2	325 5 (12 81)	267 5 (10 53)	203 5 (8 01)	58 (2 28)	166 5 (6 56)	109 (429)	145 (571)	110 _0035 4 3307 _00014	130 (512)	6 (0 24)	12 (0 47)	165 (65)	9 (035)	11 5 (25 4)
30AS1	2	374 (1472)	304 (11 96)	240 (944)	70 (276)	206 (811)	135 (531)	200 (7 87)	1143 -0040 45 -00016	180 (7 09)	6 (0 24)	18 (071)	230 (91)	13 5 (0 53)	245 (54)

AC Servomotor	Dwg	wg Shaft Extension										
Type USASEM-	No	LW	Q	QK	QA	х	s	v	Ρ	U	w	т
08AS1	2	18 (0 71)	28 (1 1)	25 (0 98)	12 (0 47)	10 3 (0 41)	16 (0 63)	21 (0 83)	M10 (P1 25)	43 -001 (0169 -0004)	5 (01968)	5 (01968)
15AS1	2	18 (0 71)	28 (1 1)	25 (0 98)	12 (0 47)	10 3 (0 41)	19 (0 75)	21 (0 83)	M10 (P1 25)	58 -01 (0228 -0004)	5 (01968)	5 (01968)
30AS1	2	20 (0 79)	36 (1 42)	32 (1 26)	14 (0 55)	12 5 (0 49)	22 (0 87)	24 (0 94)	M12 (P1 25)	66 01 (026 -0004)	6 (0 2362)	6 (0 2362)

CONNECTOR TYPES

AC Servomotor		Motor Conr	nector Types		Absolute Encoder Connector Types				
Type USASEM-	Receptacle	L-type Plug	Straight Plug	Cable Clamp	Receptacle	L-type Plug	Straight Plug	Cable Clamp	
03AS2 05AS2	MS3102 A18-10P	MS3108 B18-10S	MS3106 B18-10S	MS3057 -10A	MS3102	MS3108	MS3106	MS3057	
08AS1 15AS1 30AS1	MS31 02 A20-4P	₄MS3108 B20-4S	MS3106 B20-4S	MS3057 -12A	A20-29P	B20-29S	B20-29S	-12A	

MECHANICAL SPECIFICATIONS

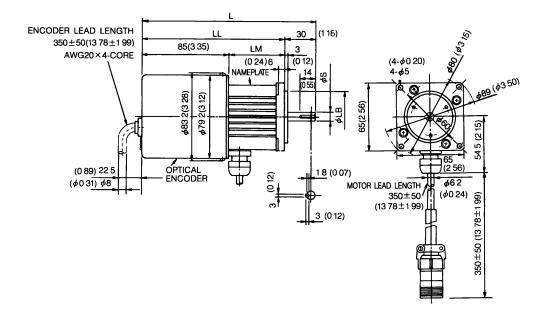
Accuracy (T I R	Reference Diagram	
Flange surface perpendicular to shaft (A)	0 04 (0 0016)	
Flange diameter concentric to shaft B	0 04 (0 0016)	
Shaft run out ©	0 02 (0 0008)	V[f _®] ##

*TIR (Total Indicator Reading)

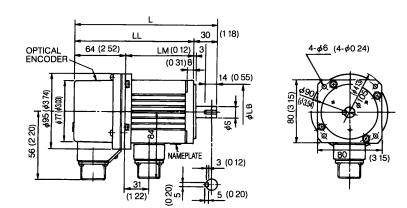
CONNECTOR SPECIFICATIONS

Motor Receptacle

Absolute Encoder Receptacle

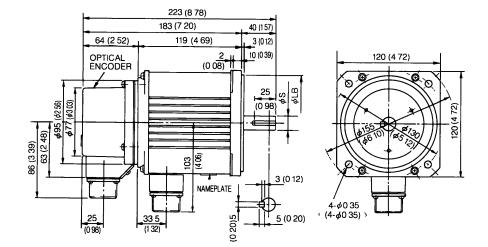

Phase U
Phase V
Phase W
Ground

A	Channel A output	к	_
в	Channel A output	L	
С	Channel B output	Ν	_
D	Channel B output	Ν	—
Е	Channel C output	Р	—
F	Channel C output	R	For reset
G	0V	s	0V (battery)
н	+5VDC	Т	36V (battery)
J	Frame ground	-	

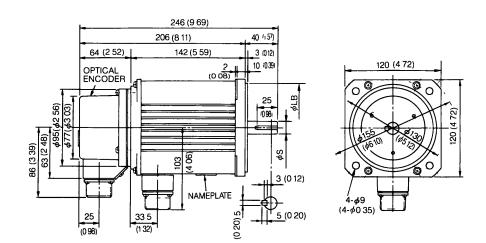

Servomotors with a brake or a modified shaft extension are also available

(6) R Series

USAREM-A5CS2K	50W,	-01CS2K	100W·····(200V)
USAREM-A5DS2K	50W,	-01DS2K	100W·····(100V)



USAREM-02CS2K	200W,	-03CS2K	300W······(200V)
USAREM-02DS2K	200W,	-03DS2K	300W(100V)



Drawing No.	Servomotor Type USAREM-	L	LL	LM	S	LB	Approx kg	. Weight (Ib)	
1	A5 ^C _D S2K	169 (6 66)	139 (5 48)	54 (213)	80 009	50 _0 ₀₂₅	15	(3 3)	
•	01 <mark>С</mark> S2K	186 5 (7 34)	156 5 (6 16)	71 5 (2 81)	(0315_0 ₀₀₀₃₆)	~(19685 _0 ₀₀₀₉₈)	18	(4 0)	
2	02 ^C _D S2K	181 5 (7 15)	151 5 (5 96)	87 5 (3 44)	14 _{- 0 011}	70 _0 _0 _0 _0 _0 _0 _0 _0 _0 _0 _0 _0 _0	25	(5 5)	
-	03 <mark>С</mark> S2K	205 5 (8 09)	175 5 (6 91)	111 5 (4 39)	(0551_0 ₀₀₀₄₃)	(2 756 _0 ₀₀₁₂)	31	(69)	
3	05 <mark>C</mark> S2K	See Drawing 3			16 ₋₀₀₁₁	110 _0 ₀₀₃₅	49	(10 8)	
4	07 <mark>С</mark> S2K	See Drawing 4		(0 631 _0 ₀₀₀₄₃)	(4 331 _0 ₀₀₀₁₄)	75	(16 5)		

USAREM-05CS2K	500W·····(200V)
USAREM-05DS2K	500W·····(100V)

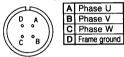
USAREM-07CS2K 700W(200V)

(6) R Series (Cont'd) **CONNECTOR TYPES**

Servomotor		Encoder Side		Motor Side					
Type USAREM-	Receptacle Type	Plug* Type	Cable Clamp Type	Receptacle Type	Plug* Type	Cable Clamp Type			
A5 1 S2K 01 52K	MS3101A21 -29P	MS3106B20 -29S		MS3101A 14S-2P	MS3106B 14-2S	MS3057 -6A			
02 S2K 03 S2K	MS3102A20	MS3108B20	MS3057 -12A	MS3102A 18-10P	MS3108B 18-10S	MS3057 -10A			
05 S2K 07 S2K	-29P	-295		MS3102A 20-4P	MS3108B 20-4S	MS3057 -12A			

*Provided by customer †[] in type designation is C (200V class) or D (100V class)

MECHANICAL SPECIFICATIONS

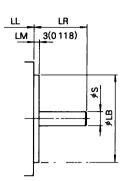

Accuracy (T	Accuracy (T R)*							
Flange surface perpendicular to shaft (A)	0 04 (0 0016)							
Flange diameter concentric to shaft ®	0 04 (0 0016)	-{						
Shaft run out ©	0 02 (0 0008)	<u>~</u> −f¦⊗ ₩						

* T I R (Total Indicator Reading)

CONNECTOR SPECIFICATIONS

Encoder Receptacle

Motor Receptacle


Α	Channel A output	κ	-
в	Channel A output	L	-
С	Channel B output	Μ	—
D	Channel B output	Ν	-
	Channel Z output	Ρ	-
F	Channel Z output	R	For reset
G	0V	S	0V (battery)
Ħ	+5VDC	Т	36V (battery)
1	_	_	_

Note 1 With motor connection shown above by plus reference voltage, the motor rotates counterclockwise

^{ence voltage, the motor rotates counterclockwise} (when viewed from the drive end)
2 Dimensions of the keyway are based on JIS B 1301 "Sunk keys and their corresponding key ways (close keys) Parallel key has been attached Tolerance of keyway is precision class

Straight Shaft

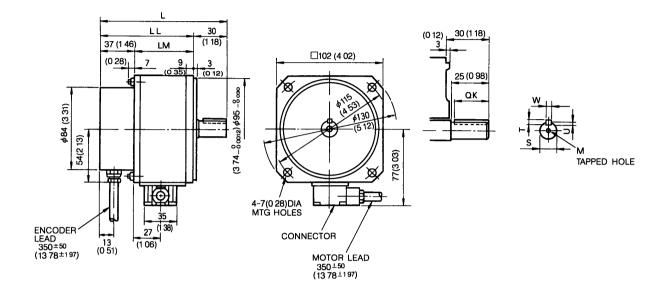
Servomotor proper is the same dimensions as standard servomotor. Details of shaft extension are shown below:

			Dimen	sions in mm (inches)
Without Brake Type USAREN-	With Brake Type USAREM-	LR	S	LB
∧5 (`, S2	A5 (`, S2B		8 –0 004	50 0 n25
01 (, s 2	01 (, S2B	30	(031 ⁰ 00035)	(197 -0 00098)
02 (S2	02 (, S2B	(1 18)	ຳ 4 ດິບານ	70 0 030
03 (, S2	03 . , S2B		(0 551 0 00043)	(2 756 0 0012)
05 (, S2	05 (, S2B	40	16 0 011	110 -0 035
00., 52	00,,328	(157)	(0 6299 0 00043	(4 331 ⁰ _{0 00014})

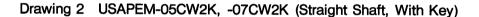
Straight Shaft with Oilseal

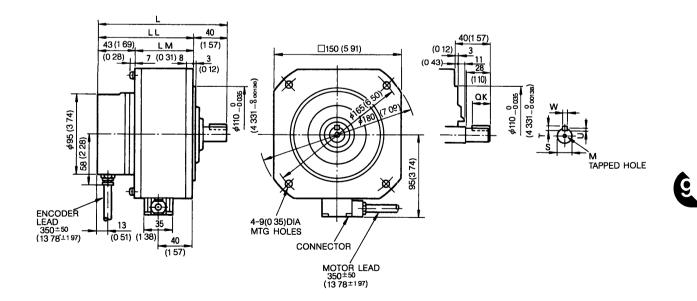
Detail of Shaft Extension

Servomotor proper is the same dimensions as standard servomotor. Details of shaft extension are shown below.


				_				Dimensions in mm	(inches)
LR 3(0 118) 11(0 43)	Without Brake Type USAREN-	With Brake Type USAREM-	LR	LE	ω	LK	S	LB	Oilseal
	A5 (, S2S	A5 (, S2SB	30 (1 18)		25	45	8 –0 009	50 ⁰ 025	SB08187
	01 (°, S2S	01 () S2SB			(0 98)	(177)	(031 ° (0035)	(197 - 0 0009x)	3006161
	02 (, S2S	02 (, S2SB			36 (142)	60) (2.36)	14 ⁰ 001	70 ⁰ 030	CD1 4007
	03 (, S2S	03 , , S2SB					(0 551 ⁰ 00043)	(2 756 ⁰ 0012)	SB14287
	05 (⁻ , s2s	05 🚬 S2SB	40 (157)	2 5 (0 10)	50 (197)	73 (2 87)	$\begin{array}{ccc} 16 & {}^{0}_{-0 \ 011} \\ (0 \ 6299 & {}^{0}_{-0 \ 00043} \end{array}) \end{array}$	$\begin{array}{ccc} 110 & -0 & 0.40 \\ (4 & 331 & -0 & 0.0014 \end{array}$	SB16307

Detail of Shaft Extension

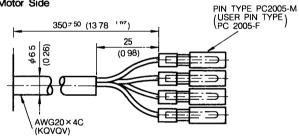

Straight Shaft with Keyway and Oilseal


Servomotor proper and shaft extension are same dimensions as standard Servomotor. Oilseal is same dimensions as shown above.

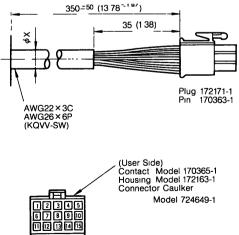
(7) P Series

Drawing 1 USAPEM-01CW2K, -02CW2K, -03CW2K (Straight Shaft, With Key)

AC Servomotor	Dwg.					Approx						
Type USAPEM-	No	L		LM	S	QK	U	w	Т	м	kg	(lb)
01 CW2K	1	123 (4 84)	93 (3 66)	56 (2 20)	11 0 ₀₀₁₁ (0 433 0 ₀₀₀₄₃)	18 (0 71)	25 (010)	4 (0 157)	4 (0 157)	M3, Deep 6 (0 24)	17	(37)
02CW2K	1	126 (4 96)	96 (3 78)	59 (2 32)	14 _0011 (0551 _000043)	18 (0 71)	3 (0 12)	5 (0 197)	5 (0 197)	M4, Deep 10 (0 39)	20	(4 4)
03CW2K	1	130 (5 12)	100 (3 94)	63 (2 48)	14 001 (0551 -000043)	18 (0 71)	3 (0 12)	5 (0 197)	5 (0 197)	M4, Deep 10 (0 39)	23	(51)
05CW2K	2	152 (5 98)	112 (4 41)	69 (2 72)	16 0001 (0630 000043)	20 (0 79)	3 (0 12)	5 (0 197)	5 (0 197)	M4, Deep ¹⁰ (0 39)	46	(10 1)
07CW2K	2	152 (5 98)	112 (4 41)	69 (2 72)	16 00.1 (0630 -000043)	20 (0 79)	3 (0 12)	5 (0 197)	5 (0 197)	M4, Deep 10 (0 39)	5	(11 0)


MECHANICAL SPECIFICATIONS

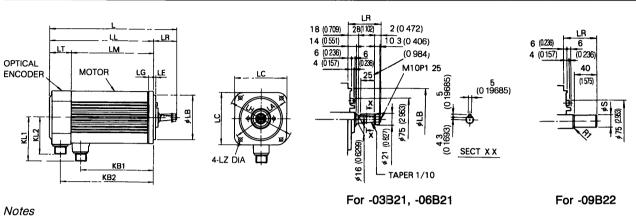
Accuracy (T I R)	Accuracy (T I R)*							
Flange surface perpendicular to shaft (A)	0 04 (0 0016)							
Flange diameter concentric to shaft B	0 04 (0 0016)							
Shaft run out	0 02 (0 0008)	<u>~_f</u> t ^g						


*TIR (Total Indicator Reading)


CONNECTOR SPECIFICATIONS

· Motor Side

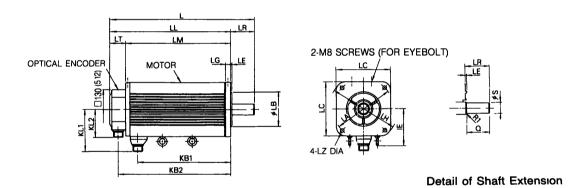
Encoder Side


1	Channel A output	Blue
2	Channel A output	White/Blue
3	Channel B output	Yellow
4	Channel B output	White/Yellow
5	Channel Z output	Green
6	Channel Z output	White/Green
7	0V (Power Supply)	Black
8	+5V (Power Supply)	Red
9	FG frame ground	Green/Yellow
10	Channel S output	Purple
11	Channel S output	White/Purple
12	Capacitor reset	Gray
13	Reset	White/Gray
14	0V (Battery)	White/Orange
15	36V (Battery)	Orange

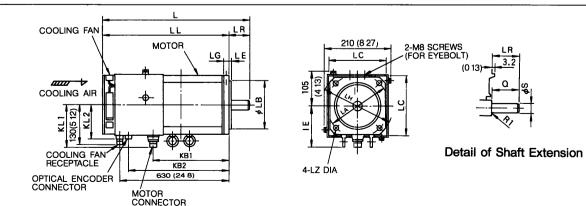
9.2 AC SERVOMOTOR WITH INCREMENTAL ENCODER

(1) M Series

Dimensions in mm (inches)


Detail of Shaft Extension

Drawing 1 USAMED-03B21, -06B21 (Taper Shaft), -09B22 (Straight Shaft)


- 1 Plug and clamp are not attached for receptacle connection
- 2 Key and keyway comply with JIS B 1301-1976
- (Parallel key, keyway common class)
- 3 Motor should be mounted with connectors down

Drawing 2 USAMED-12B22 to -44B22 (Straight Shaft)

Notes

- Plug and clamp are not attached for receptacle connection
- 2 Motor should be mounted with connectors down

Drawing 3 USAMKD-60B22 (Straight Shaft)

Notes

1 Plug and clamp are not attached for receptacle connection

2 Motor should be mounted with connectors down

	Dwg		ш	LM	LR		KB1	KB2	ίΕ	KI I	10			FI	ange	Surfa	ace			Shaft Exte	ension	Approx
Type USAMED*	No	-						ND2		I'NLI	KL1 KL2	LA	L	в	LC	LE	LG	LH	LZ	S	Q	Weight kg (lb)
03B21†		263 (1034)	205 (806)	150 (59)	58 (2.28)	55 (216)	127 (50)	177 (697)	_	109 (429)	92 (362)	145 (571)	110 (43307	-0005	130 (512)	6 (024)	12 (047)	165 (65)	9 (035)		-	85 (187)
06B21 [†]	1	320 (1259)	262 (1031)	207 (815)	58 (228)	55 · (216)	184 (724)	234 (921)	-	109 (429)	92 (362)	145	110 (43307	-0035	130 (512)	6 (024)	12 (047)	165 (6.5)	9 (035)	_	-	13 (287)
09B22 [†]		389 (1531)		276 (1087)	58 (228)	55 (216)	253 (996)	303 (11 93)	_	109 (429)	92 (362)	145 (571)	110 (43307	-0.035	130 (512)	6 (024)	12 (047)	165 (65)	9 (035)	22 -0013 (08661 -00005)	40 (1 575)	20 (44 1)
12B22 [†]		343 (13 49)	264 (1038)	211 (8.30)	79 (311)	53 (208)	171 (673)	237 (933)	-	139 (547)	92	200 (787)	1143	-0.025	180 (708)	32 (013)	18 (071)	230 (91)	135		76	22 (485)
20B22		401 (1579)	322 (1268)	269 (1060)	79 (311)	53 (208)	229 (901)	295 (11 61)	123 (484)	139 (547)	92 (362)	200 (787)	1143 (45	-0025	180 (708)	32 (013)	18 (071)	230 (91)	135	· /	76	29 (63 9)
30B22	2	486 (19 13)	407 (1602)	354 (1394)	79 (311)	53 (208)	314 (1236)	380 (1496)		139 (547)	92	200 (7 87)	1143	-0025	180 (708)	32 (013)	18 (071)	230 (91)	135		76	41 (904)
44B22		687 (27 04)	577 (2271)	524 (2063)	110 (433)	53 (208)	476 (1874)	550 (21 65)		149 (587)	92	200 (7 87)	1143	-0025	180 (708)	32 (013)	18 (071)	230 (91)	135		110	66 (145 5)
60B22		820 (32 28)	710 (27 95)	_	110 (433)	-	482 (1898)	587 (2311)	124 (488)	150 (591)	100	200 (7 87)	1143	-0.025	180	32	18 (071)	230	135		110	71 (156 9)

* For servomotor of 6kW, "K" is used instead of "E", because of externally fan-cooled type † Not provided with an eyebolt

CONNECTOR TYPES

AC Servomotor		Motor Conr	ector Types		Incremental Encoder Connector Types					
Type USAMED-	Receptacle	L-type Plug	Straight Plug	Cable Clamp	Receptacle	L-type Plug	Straight Plug	Cable Clamp		
03B21 06B21 09B22	MS3102 A18-10P	MS3108 B18-10S	MS3106 B18-10S	MS3057 -10A			MS3106 B20-29S			
12B22 20B22 30B22	MS3102 A22-22P	MS3108 B22-22S	MS3106 B22-22S	MS3057 -12A	MS3102	MS3108 B20-29S		MS3057 -12A		
44B22 USAMKD- 60B22*	MS3102 A32-17P	MS3108 B32-17S	MS3106 B32-17S	MS3057 -20A	A20-29P					

* Cooling fan receptacle MS3102A14S-6P Cooling fan plug MS3108B14S-6 Cooling fan cable clamp MS3057-6A MS3108B14S-6P

MECHANICAL SPECIFICATIONS

Accuracy (T. I. R)*	Reference Diagram
Flange surface perpendicular to shaft (A)	0 04 (0 0016)	
Flange diameter concentric to shaft ®	0 04 (0 0016)	<pre>{</pre>
Shaft run out ©	0 02 (0 0008) 0 04' (0 0016 [†])	✓[t _® <i>,,,,,</i> ,

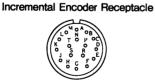
*T I R (Total Indicator Reading) † Accuracy for motor types USAMED-44B22, USAMKD-60B22

CONNECTOR SPECIFICATIONS

Motor Receptacle

Phase U

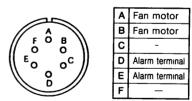
Phase V

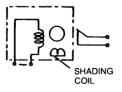

Phase W

Ground

Α в

С

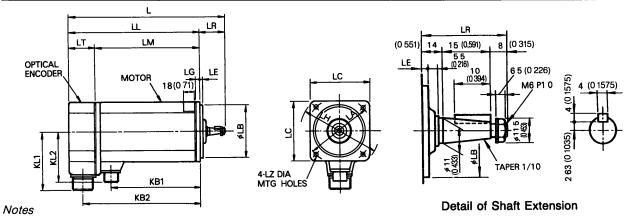

D



Α	Channel A output	ĸ	-
в	Channel A output	L	
С	Channel B output	М	
D	Channel B output	Ν	-
Е	Channel C output	Ρ	
F	Channel C output	R	_
G	0V	S	
Н	+5VDC	T	_
J	Frame ground	_	

Servomotors with a brake or a modified shaft extension are also available For detailed information, refer to related Bulletins (TSE-S800-11 1)

FAN TERMINAL CONNECTION (For only 60B22)

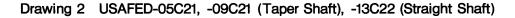


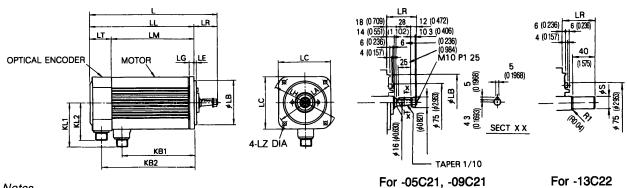
Alarm Contact OFF at normal fan rotation ON at 1800±200 r/min or less (ON during 3 seconds at start-up) Contact Capacity

Max resistive load 110V, 03A

(2) F Series

USAFED-02C21, -03C21 (Taper Shaft) Drawing 1

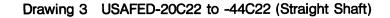


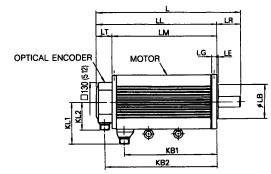

1 Plug and clamp are not attached for receptacle connection

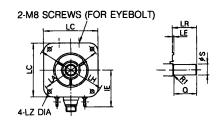
2 Key and keyway comply with JIS B 1301-1976

(Parallel key, keyway common class)

3 Motor should be mounted with connectors down






Notes

1 Plug and clamp are not attached for receptacle connection

- 2 Key and keyway comply with JIS B 1301-1976 (Parallel key, keyway common class)
- 3 Motor should be mounted with connectors down

Detail of Shaft Extension

Detail of Shaft Extension

Notes

1 Plug and clamp are not attached for receptacle connection

2 Motor should be mounted with connectors down

	Dwg			LM	LR	LT	KBI	KB2	IE				F	lange	Surfa	ace			Shaft Exte	ension	Approx		
Type USAFED-	No	-					КЫ	NDZ						LA	LB	LC	LE	LG	LH	LZ	S	Q	Weight kg (ib)
02C21*	4	190 (7 48)	153 (602)	113 (4 45)	37 (146)	40 (1 57)	90 (354)	132 (519)	_	76 (343)	89 (299)	100 (394)	80 -0,000 (31496 -0,0012)	90 (3 54)	4 (0 157)	7 (0 276)	120 (472)	66 (026)	_	-	55 (77)		
03C21*		236 (929)	199 (783)	159 (626)	37 (1 46)	40 (1 57)	136 (535)	178 (70)	_	76 (343)	89 (299)	100 (394)	80 -0.030 (31496 -0.0012)	90 (354)	4 (0 157)	7 (0 276)	120 (472)	66 (026)	-	-	65 (143)		
05C21*		263 (10 35)	205 (807)	150 (591)	58 (2 28)	55 (216)	127 (50)	177 (697)	_	109 (429)	92 (362)	145 (571)	110 -0035 (43307 -00014)	130 (512)	6 (024)	12 (047)	165 (65)	9 (035)	_	_	85 (187)		
09C21*	2	320 (126)		207 (816)	58 (2 28)	55 (216)	184 (7 24)	234 (921)	_	109 (429)	92 (362)	145 (571)	110 -0.035 (43307 -0.0014)	130 (512)	6 (024)	12 (0 47)	165 (65)	9 (035)		-	13 (287)		
13C22*		389 (1531)	331 (13 03)	276 (1087)	58 (228)	55 (216)	253 (996)	303 (11 93)		109 (429)	92 (362)	145 (571)	110 0,0035 (43307 -0,0014)	130	6 (024)	12 (047)	165 (65)	9 (035)	22 _0013 0 8661 _00005	40 (157)	20 (441)		
20C22*		343 (135)	264 (10 39)	211 (83)	79 (311)	53 (209)	171 (673)	237 (933)	_	139 (5 47)	92 (362)	200 (7 87)		180 (709)	32 (013)	18 (071)	230 (906)	13 5 (0 53)	35 ^{+0.01} 1 3779 ^{+0.0004}	76 (299)	22 (485)		
30C22	3	401 (15 79)	322 (1268)	269 (10 59)	79 (311)	53 (209)	229 (902)	295 (11 61)	123 (485)	139 (547)	92 (362)	200 (7 87)		180 (7 09)	32 (013)	18 (071)	230 (906)	13 5 (0 53)	35 ^{+0.01} 1 3779 ^{+0.0004}	76 (299)	29 (63 9)		
44C22		486 (19 14)	407 (1602)	354 (13 93)	79 (311)	53 (209)	314 (1236)	380 (1496)	123 (485)	139 (547)	92 (362)	200 (7 87)	1143 - 6025 (45 - 6001)	180 (7 09)	32 (013)	18 (071)	230 (906)	13 5 (053)	35 ⁺⁰⁰¹ 1 3779 ^{-0.0004}	76 (299)	41 (90 4)		

* Not provided with an eyebolt

CONNECTOR TYPES

AC Servomotor		Motor Conr	nector Types		Incremental Encoder Connector Types						
Type USAFED-	Receptacle	L-type Plug	Straight Plug	Cable Clamp	Receptacle	L-type Plug	Straight Plug	Cable Clamp			
02C21 03C21	MS3102 A14S-2P	MS3108 B14S-2S	MS3106 B14S-2S	MS3057 -6A							
05C21 09C21 13C22	MS3102 A18-10P	MS3108 B18-10S	MS3106 B18-10S	MS3057 -10A	MS3102 A20-29P	MS3108 B20-29S	MS3106 B20-29S	MS3057 -12A			
20C22 30C22 44C22	MS3102 A22-22P	MS3108 B22-22S	MS3106 B22-22S	MS3057 -12A							

MECHANICAL SPECIFICATIONS

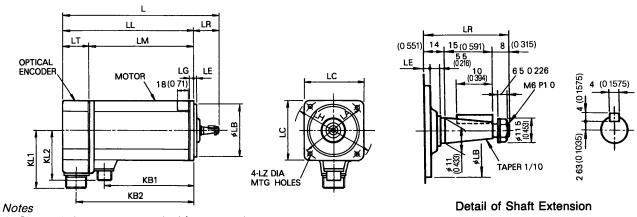
Accuracy (T.I R	Accuracy (T.I R)*							
Flange surface perpendicular to shaft (A)	0 04 (0 0016)							
Flange diameter concentric to shaft B	0 04 (0 0016)							
Shaft run out ©	0 02 (0 0008)	حـــائ[®] ،						

*T I R (Total Indicator Reading)

CONNECTOR SPECIFICATIONS

Motor Receptacle

Incremental Encoder Receptacle

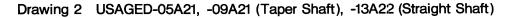

Α	Phase U
в	Phase V
С	Phase W
D	Ground

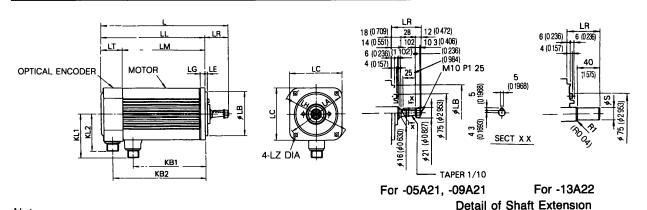
A	Channel A output	κ	—
в	Channel A output	L	—
С	Channel B output	м	_
D	Channel B output	N	—
Е	Channel C output	Р	
F	Channel C output	R	
G	0V	S	_
H	+ 5VDC	Т	_
J	Frame ground	—	_

Servomotors with a brake or a modified shaft extension are also available For detailed information, refer to related Bulletins (TSE-S800-111)

(3) G Series

Drawing 1 USAGED-02A21, -03A21 (Taper Shaft)

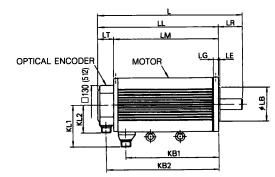


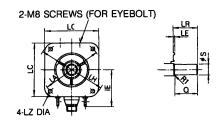

1 Plug and clamp are not attached for receptacle connection

2 Key and keyway comply with JIS B 1301-1976

(Parallel key, keyway common class)

3 Motor should be mounted with connectors down


Notes


1 Plug and clamp are not attached for receptacle connection

 Key and keyway comply with JIS B 1301-1976 (Parallel key, keyway common class)

3 Motor should be mounted with connectors down

Drawing 3 USAGED-20A22 to -44A22 (Straight Shaft)

Detail of Shaft Extension

Notes

1 Plug and clamp are not attached for receptacle connection

2 Motor should be mounted with connectors down

AC Servomotor	Dwg			LM	LR	LT	KB1	KB2	ſE	KI 1	KL1 KL2-				FI	ange	Surfa	ace			Shaft Exte	ension	Approx
Type USAGED-	No	_						ND2	1		LA	LB	LC	LE	LG	LH	LZ	S	Q	Weight kg (lb)			
02A21*	1	190 (7 48)	153 (602)	113 (445)	37 (146)	40 (1 57)	90 (3 54)	132 (519)	-	76 (3 43)	89 (299)	100 (394)	80 -0.030 (31496 -0.0012)	90 (354)	4 (0 157)	7 (0 276)	120 (472)	66 (026)	_	-	55 (77)		
03A21*	'	236 (929)		159 (626)	37 (1 46)	40 (1 57)	136 (535)	178 (70)	_	76 (343)	89 (299)	100	80 -0030 (31496 -00012)	90	4 (0 157)	7 (0 276)	120 (472)	66 (026)	_		65 (143)		
05A21*		263 (10 35)	205 (807)	150 (591)	58 (228)	55 (216)	127 (50)	177 (697)		109 (429)	92 (362)	145 (571)	110 -0035 (4 3307 -00014)	130 (512)	6 (024)	12 (047)	165 (65)	9 (035)		-	85 (187)		
09A21*	2	320 (126)	262 (1032)		58 (228)	55 (216)	184 (724)	234 (921)	_	109 (429)	92 (362)	145 (571)	110 _0005 (43307 _00014)	130 (512)	6 (024)	12 (047)	165 (65)	9 (0 35)	_	_	13 (287)		
13A22*		389 (1531)		276 (1087)	58 (228)	55 (216)	253 (996)	303 (11 93)	_	109 (429)	92 (362)	145 (571)	110 _0035 (43307 _00014)	130 (512)	6 (024)	12 (047)	165 (65)	9 (035)	22 -0013 (08661 -00005)	40 (1 57)	20 (441)		
20A22*		343 (135)	264 (10 39)	211 (83)	79 (311)	53 (209)	171 (673)	237 (933)	-	139 (547)	92 (362)	200 (7 87)	1143 _0.025 (45 _0.001)	180 (709)	32 (013)	18 (071)	230 (906)	135	35 ⁺⁰⁰¹ (13779 ^{-0.0004})	76	22 (485)		
30A22	3	401 (15 79)	322 (1268)	269 (1059)	79 (311)	53 (209)	229 (902)	295 (11 61)	123 (485)	139 (547)	92 (362)		1143 - 0.025 (45 - 0.001)	180 (709)	32 (013)	18 (071)	230 (906)	135	35 ^{+0.01} (1 3779 ^{-0.0004})	76	29 (639)		
44A22		486 (19 14)	407 (16 02)	354 (13 93)	79 (311)	53 (209)	314 (1236)	380 (1496)	123 (485)	139 (5 47)	92 (362)	200 (7 87)	$\begin{array}{ccc} 1143 & -0.025 \\ (45 & -0.001 \end{array}$	180 (7 09)	32 (013)	18 (071)	230 (906)	135 (053)	35 ⁺⁰⁰¹ (13779 -00004)	76 (299)	41 (904)		

* Not provided with an eyebolt

CONNECTOR TYPES

AC Servomotor		Motor Conr	nector Types		Incremental Encoder Connector Types							
Type USAGED-	Receptacle	L-type Plug	Straight Plug	Cable Clamp	Receptacle	L-type Plug	Straight Plug	Cable Clamp				
02A21 03A21	MS3102 A14S-2P	MS3108 B14S-2S	MS3106 B14S-2S	MS3057 -6A								
05A21 09A21 13A22	MS3102 A18-10P	MS3108 B18-10S	MS3106 B18-10S	MS3057 -10A	MS3102 A20-29P	MS3108 B20-29S	MS3106 B20-29S	MS3057 -12A				
20A22 30A22 44A22	MS3102 A22-22P	MS3108 B22-22S	MS3106 B22-22S	MS3057 -12A		220 200	520-230	-127				

Servomotors with a brake or a modified shaft extension are also available For detailed information, refer to related

Bulletins (TSE-S800-11 1)

MECHANICAL SPECIFICATIONS

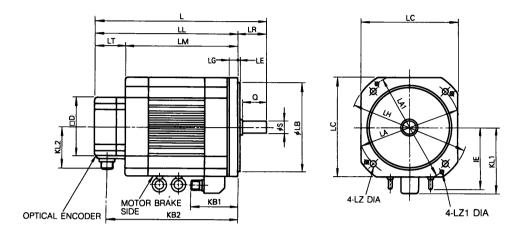
Accuracy (T I. R)*	Reference Diagram
Flange surface perpendicular to shaft (A)	0 04 (0 0016)	
Flange diameter concentric to shaft B	0 04 (0 0016)	
Shaft run out ©	0 02 (0 0008)	<u>حالت</u> ® <i>س</i>

*T I R (Total Indicator Reading)

CONNECTOR SPECIFICATIONS

Motor Receptacle

Incremental Encoder Receptacle

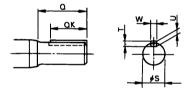


A	Phase U
В	Phase V
С	Phase W
D	Ground

Α	Channel A output	κ	-
в	Channel A output	L	
С	Channel B output	м	_
D	Channel B output	Ν	-
Е	Channel C output	Ρ	1
F	Channel C output	R	_
G	0V	S	_
Н	+ 5VDC	Т	_
J	Frame ground	—	_

(4) D Series

Drawing 1 USADED-05E3 to -37E3



Notes

1 Plug and clamp are not attached for receptacle connection

2 Motor should be mounted with connectors down

Straight Shaft/With Key

Detail of Shaft Extension

Note · Key and keyway comply with JIS B 1301-1976 (parallel key, keyway common class)

AC Servomotor		Sha	ft Exte	ension		
Type USADED-	S	Q	QK	Т	U	w
05E32K 🗆	22 _0.021 (0 8661 _00008)	50 (1 97)	46 (1 77)	6 (0 236)	35 (0138)	6 (0 2362)
10E32K 🗆	22 -0021 (0 8661 -00008)	50 (1 97)	45 (1 77)	6 (0 236)	35 (0138)	6 (0 2362)
15E32K 🗆	28 0013 (1 1024 -00005)	50 (1 97)	45 (1 77)	7 (0 275)	4 (0157)	8 (0 31 49)
22E32K 🗆	$\begin{array}{rrr} 28 & - \overset{0}{}_{0013}^{0} \\ (11024 & - \overset{0}{}_{00005}^{0}) \end{array}$	50 (1 97)	45 (1 77)	7 (0 275)	4 (0 157)	8 (03149)
37E32K 🗆	$\begin{array}{ccc} 32 & - \overset{0}{_{0016}} \\ (1\ 2598 & - \overset{0}{_{00006}}) \end{array}$	60 (2 36)	50 (1 97)	8 (0 315)	5 (0 197)	10 (03937)

AC Servomotor										1/1 0	_			Fla	ange	Surfa	ace				Shaft Exte	nsion	Approx Weight
Type USADED-		ш		LR		KBI	KB2	ΙE	KL1	KL2	D	LA	LA1	LB	LC	LE	LG	н	ιz	LZ1	S	Q	kg (lb)
05E32OE	237 (933)	182 (717)	138 (5 44)	55 (216)	44 (173)	90 (354)	158 (622)	—	138 (5 43)	93 (366)	130 (5 *2)	200 (7 87)	-	1143 0,025 (45 -0001)	180 (7 09)	32 (0126)	12 (0 472)	230 (906)	13 5 (0 53)	—	22 0,013 (0 8661 -0,0005)	50 (1 97)	17 (16) [37 5 (35 3)]
10E32OE	257 (10 12)	202 (796)	158 (623)	55 (216)	44 (173)	90 (354)	178 (70)	_	138 (5 43)	93 (366)	130 (5 12)	200 (7 87)	_	1143 0025 (45 -0.00;)	180 (7 09)	32 (0126)	12 (0 472)	230 (906)	13 5 (0 53)		22 0013 (0 8661-00005)	50 (197)	19 (18) [41 9 (39 7)]
15E32OE	270 (1063)	217 (847)	171 (666)	55 (216)	46 (181)	95 (374)	191 (7 52)	142 (559)	160 (63)	93 (366)	130 (512)	235 (925)	250 (984)	200 0.046 (7 874 -0.00-8)	220 (8 66)	4 (0 157)	16 (063)	270 (1063)	13 5 (0 53)	М8	28 0.013 (1 1024 -0.0005)	50 (197)	30 (27) [66 2 (59 5)]
22E32OE	285 (11 22)	232 (906)	186 (7 25)	55 (216)	46 (181)	95 (3 74)	206 (8 11)	142 (559)	160 (63)	93 (366)	130 (5 12)	235 (925)	250 (984)	200 -0046 (7 874 0.0018)	220 (8 66)	4 (0 157)	16 (063)	270 (1063)	13 5 (0 53)	M8	28 0013 (1 1024 -0.0005)	50 (197)	32 (29) [706 (639)]
37E32OE	345 (1358)	282 (11 02)	236 (921)	65 (256)	46 (181)	95 (3 74)	256 (10 08)	142 (559)	160 (63)	93 (366)	130 (512)	235 (925)	250 (984)	200 0.046 (7 874 -0.0018)	220 (866)	4 (0 157)	16 (063)	270 (1063)	13 5 (0 53)	М8	32 0016 (1 2598 00006)	60 (236)	39 (36) [86 (794)]

* Not provided with an eyebolt

Dimensions above are applied for servomotor w/wo holding brake as well Notes Approx weight in [] is for servomotor without holding brake

CONNECTOR TYPES

AC Servomotor		Motor Conn	ector Types		Incremental Encoder Connector Types							
Type USADED-	Receptacle	L-type Plug	Straight Plug	Cable Clamp	Receptacle	L-type Plug	Straight Plug	Cable Clamp				
05E32	MS3102 A20-15P	MS3108 B20-15S	MS3106 B20-15S	MS3057 -12A	MS3102	MS3108	MS3106	MS3057				
15E32 22E32 37E32	MS3102 A24-10P	MS3108 B24-10S	MS3106 B24-10S	MS3057 -16A	A20-29P	B20-29S	B20-29S	-12A				

MECHANICAL SPECIFICATIONS

Accuracy (T 1 R	Reference Diagram	
Flange surface perpendicular to shaft (A)	0 04 (0 0016) 0 06† (0 0024†)	
Flange diameter concentric to shaft B	0 04 (0 0016)	
Shaft run out ©	0 02 (0 0008)	ᡪ᠆᠆ ᡛ _{᠊ᢙ} ᡕ <i>᠁</i>

*T I R (Total Indicator Reading) † Accuracy for motor types USADED-15E3 -22E3, and -37E3

CONNECTOR SPECIFICATIONS

Motor Receptacle

F° °A
\\ ₀°ັ℃//

Α	Phase U	Ε	Brake term
в	Phase V	F	Brake term
С	Phase W	G	—
D	Ground		

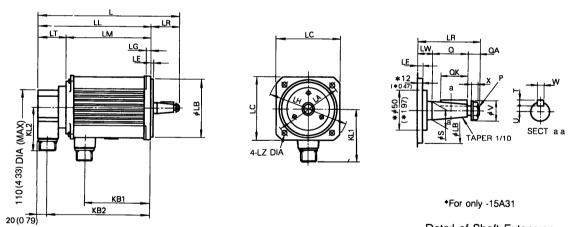
When not provided with holding brake, E and F are not used

Incremental Encoder Receptacle

Α	Channel A output	κ	_
в	Channel A output	L	-
С	Channel B output	М	_
D	Channel B output	Ν	
Е	Channel C output	Ρ	_
F	Channel C output	R	_
G	0V	S	_
н	+5VDC	т	
J	Frame ground	-	

Servomotors with a brake or a modified shaft extension are also available For detailed information, refer to related Bulletins (TSE-S800-111)

(5) S Series


Drawing 1 USASEM-02A32, -03A32, -05A32 (Straight Shaft)

Notes

- 1 Type USASEM-02A32 terminates in bare wires with a waterproof gland (seal) fitting Therefore, the MS-connector part differs from the figure above For details, contact your YASKAWA representative
- 2 Plug and clamp are not attached for receptacle connection
- 3 Motor should be mounted with connectors down

Drawing 2 USASEM-08A31, -15A31, -30A31 (Taper Shaft)

Detail of Shaft Extension

Notes

- 1 Hexagon socket head bolts should be used to mount the motor
- 2 Plug and clamp are not attached for receptacle connection
- 3 Key and keyway comply with JIS B 1301-1976 (Parallel key precise class)
- 4 Motor should be mounted with connectors down

Drawing 1

AC Servomotor			LM	LT	LR	KB1		Flar	ige Sur	face ar	nd Shat	't Exter	nsion		Approx
Type USASEM-						NDI	LA	LB	LC	LE	LG	LH	LZ	S	Weight kg (lb)
02A32	164 5 (6 48)	134 5 (5 3)	95 5 (3 76)	39 5 (1 54)	30 (1 18)	76 5 (3 61)	80 (3 15)	50 -0 ₀₂₅ (19685 001)	65 (2 559)	3 (0 118)	6 (0 24)	89 (3 50)	5 (0 197)	8 -0009 (0315 00003)	14 (31)
03A32	178 5 (7 03)	148 5 (5 85)	109 (4 29)	39 5 (1 56)	30 (1 18)	78 (3 07)	90 (3 54)	70 0000 (2 7559 -00012)	80 (3 15)	3 (0 118)	8 (0 31)	105 (4 13)	6 (0 236)	14 -0011 (0 5512 -00004)	26 (57)
05A32	200 5 (7 89)	170 5 (6 71)	131 (5 16)	39 5 (1 55)	30 (1 18)	100 (3 94)	90 (3 54)	70 0000 (2 7559 00012)	80 (3 15)	3 (0 118)	8 (0 31)	105 (4 13)	6 (0 236)	14 00011 (0 5512 00004)	33 (73)

Drawing 2

AC Servomotor		ш	1.14	LT		KB1	KBO		VI O		F	lang	e Si	urfac	e						S	haft	Exte	ensio	on	÷		Approx
Type USASEM-							ND2	RLI.		LA	LB	LC	LE	LG	LH	١Z	LW	Q	QK	QA	x	s	v	Р	U	w	Т	Weight kg (Ib)
08A31	257 (10 12)		1485 (585)			115 (4 53)	188 (74)	102 (4 02)	86 (3 39)	130 (5 12)	110 -0.035 (4 3307 0001/)	120 (4 72)	3 (0 12)	10 (04)	155 (61)	9 (0 35)	18 (071)	28 (11)	25 (098)	12 (0 47)	103 (041)	16 (063)	21 (0 83)	M10 (P1 25)	43 0, (0169 0,004)	5 (0 1968)	5 (0 1968)	6 (132)
15A31	317 5 (12 5)				58 (2.28)		239 5 (9 43)		87 (3 43)		110 0035 (4 3307 -00014)	130 (5 12)	6 (024)	12 (0 47)	165 (6 5)	9 (0 35)	18 (0 71)	28 (1 1)	25 (0 98)	12 (0 47)	103 (041)	19 (0 75)	21 (0 83)	M10 (P1 25)	58 -0.1 (0228 0004)	5 (0.1968)	5 (0 1968)	11 (243)
30A31	366 (14 41)	296 (11 65)	240 (9 45)		70 (2 76)	206 (8 11)	276 (10 87)	135 (5 32)	87 (3 43)		1143 0040 (43 00016)	180 (7 09)	6 (0 24)	18 (071)	230 (91)	13 5 (0 53)	20 (0 79)	36 (1 42)	32 (1 26)	14 (0 55)	12 5 (0 49)	22 (0 87)	24 (094)	M12 (P1.25)	66 ⁰ 01 (026 ⁰ 004)	6 (0 <i>2</i> 362)	6 (0 <i>2</i> 362)	24 (52 9)

CONNECTOR TYPES

AC Servomotor		Motor Conr	ector Types		Incremental Encoder Connector Types							
Type USASEM-	Receptacle	L-type Plug	Straight Plug	Cable Clamp	Receptacle	L-type Plug	Straight Plug	Cable Clamp				
03A32 05A32	MS3102 A18-10P	MS3108 B18-10S	MS3106 B18-10S	MS3057 -10A	MS3102	MS3108	MS3106	MS3057				
08A31 15A31 30A31	MS3102 A20-4P	MS3108 B20-4P	MS3106 B20-4P	MS3057 -12A	A20-29P	B20-29S	B20-29S	-12A				

MECHANICAL SPECIFICATIONS

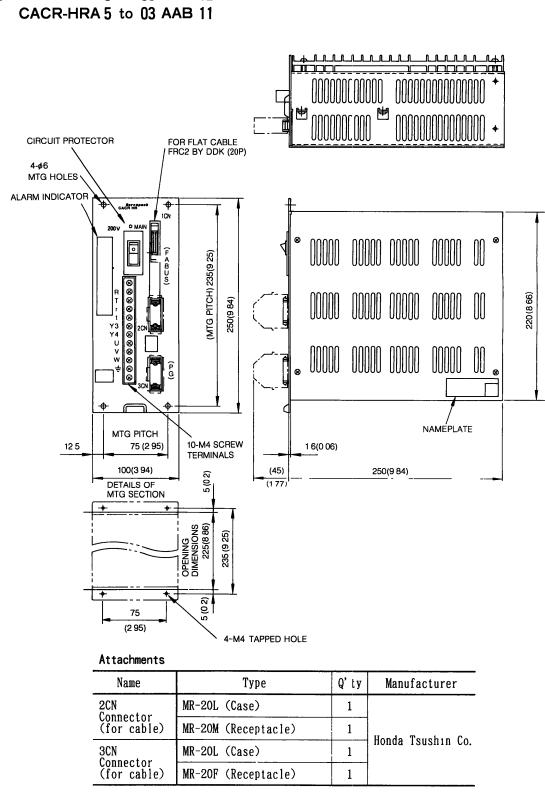
Accuracy (T I. R))*	Reference Diagram
Flange surface perpendicular to shaft (A)	0 04 (0 0016)	1
Flange diameter concentric to shaft B	0 04 (0 0016)	
Shaft run out ©	0 02 (0 0008)	v[r _®]

* T I R (Total Indicator Reading)

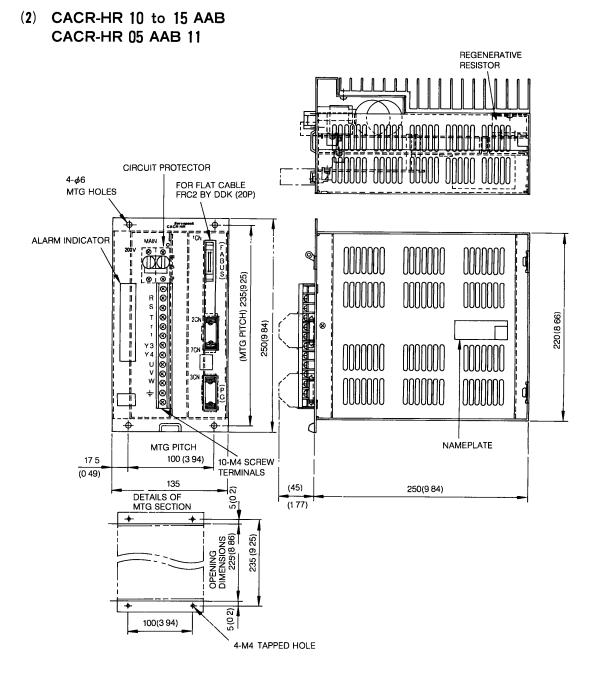
CONNECTOR SPECIFICATIONS

Motor Receptacle Incremental Encoder Receptacle

Α	Phase U
в	Phase V
С	Phase W
D	Ground

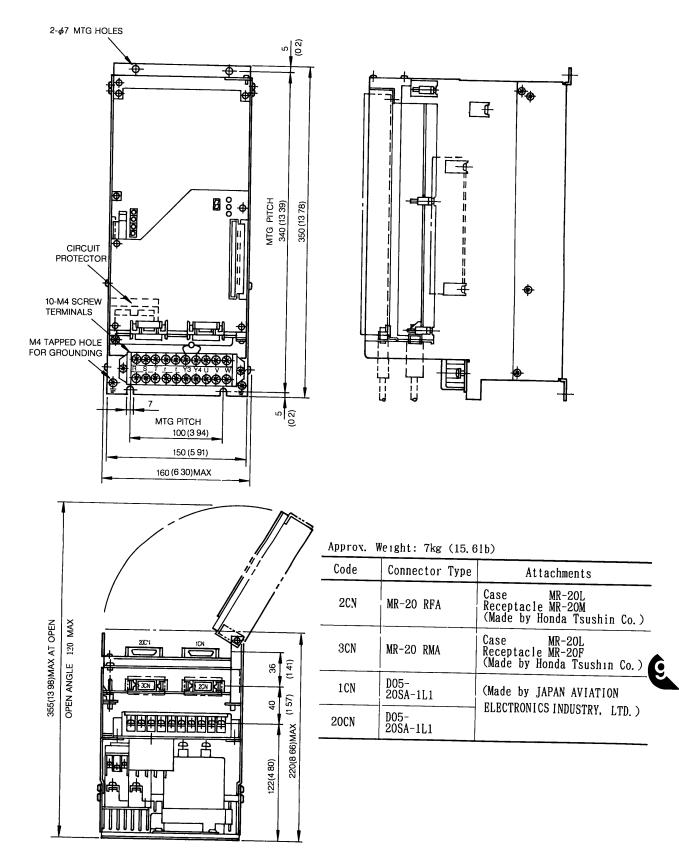

			_	
	Α	Channel A output	κ	_
	в	Channel A output	L	—
ľ	С	Channel B output	м	
	D	Channel B output	Ν	—
	Ε	Channel C output	Ρ	—
	F	Channel C output	R	_
ſ	G	ov	S	_
ſ	Н	+5VDC	Т	—
ĺ	J	Frame ground	—	—

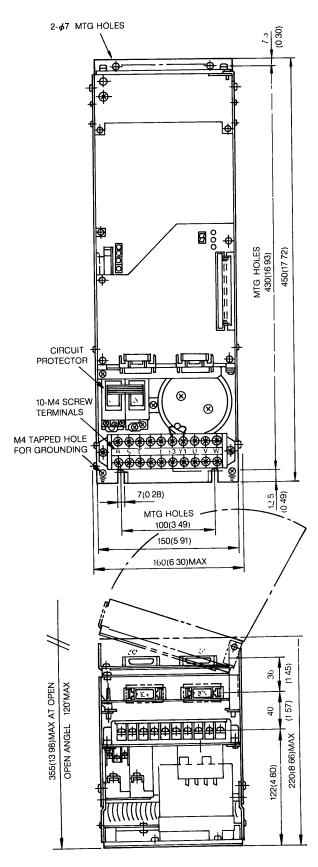
Servomotors with a brake or a modified shaft extension are also available For detailed information, refer to related Bulletins (TSE-S800-111)

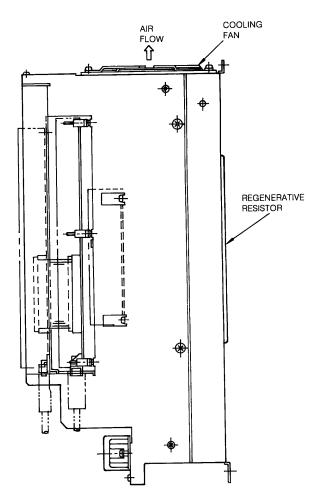

9.3 SERVOPACK

Rack-mounted Type CACR-HR 9.3.1

Dimensions in mm (inches)

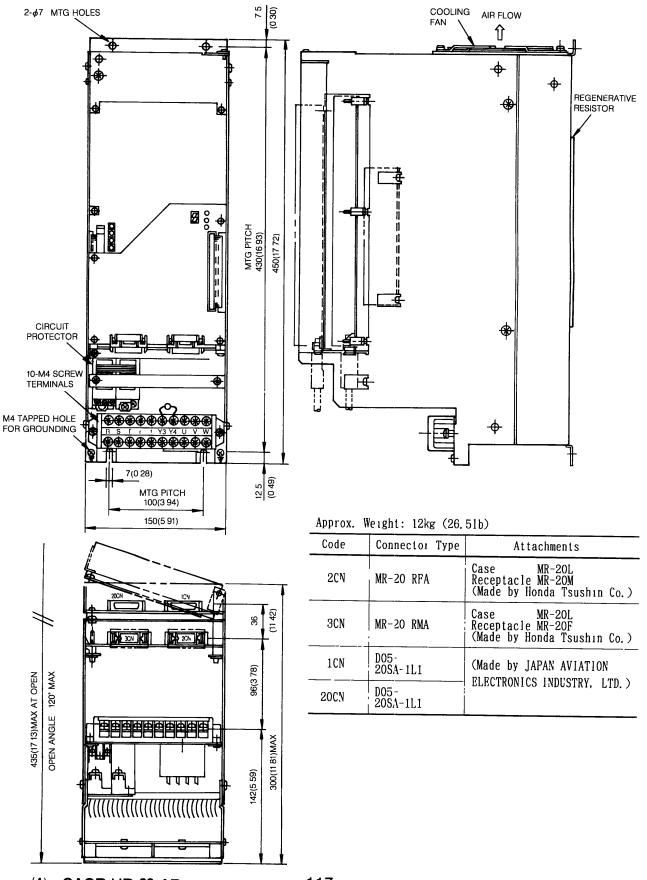

(1) CACR-HRA 5 to 05 AAB 12


Attachments


Name	Туре	Q'ty	Manufacturer
2CN	MR-20L (Case)	1	Honda Tsushin Co.
Connector (foi cable)	MR–20M (Receptacle)	1	
3CN	MR-20L (Case)	1	
Connector (for cable)	MR-20F (Receptacle)	1	

(1) CACR-HR 03 AB to HR 15 AB

(2) CACR-HR 20 AB, -HR 30 AB



Appiox. Weight: 9kg (19.91b)

Code	Connector Type	Attachments	
2CN	 MR-20 RFA	Case MR-20L Receptacle MR·20M (Made hy Honda Tsushin Co.)	
3CN	MR-20 RMA	Case MR-201 Receptacle MR-20F (Made by Honda Tsushin Co.)	
1CN	D05- 20SA-1L1	(Made by JAPAN AVIATION ELECTRONICS INDUSTRY, LTD.)	
20CN	D05- 20SA-1L1		

(3) CACR-HR 44 AB

(4) CACR-HR 60 AB To be released soon. - 117 -

AC SERVO DRIVES

FOR MOTIONPACK-10,-120/POSITIONING CONTROL

SERVOMOTOR TYPES USAMED, USAFED, USAGED, USADED, USASEM, USAREM, USAPEM SERVOPACK CACR-HR AAB(Rack-mounted Type) CACR-HR AB (Base-mounted Type)

TOKYO OFFICE Ohtemachi Bidg, 1-6-1 Ohtemachi, Chiyoda-ku, Tokyo 100 Japan Phone (03) 3284-9111, -9145 Telex YASKAWA J33530 Fax (03) 3284-9034 **SEOUL OFFICE** Seoul Center Bidg, 91-1, So Kong-Dong Chung-ku, Seoul, Korea Phone (02) 776-7844 Fax (02) 753-2639 **TAIPEI OFFICE** Union Commercial Bidg, 14F, 137, Nanking East Road, Sec 2, Taipei, Taiwan Phone (02) 507-7065, -7732 Fax (02) 506-3837 **YASKAWA ELECTRIC AMERICA, INC SUBSIDIARY Chicago-Corporate Headquarters** 2942 MacArthur Bivd Northbrook, Illinois 60062-2028, U S A Phone (708) 291-2340 Fax (708) 498-2430 **Chicago-Technical Center** 3160 MacArthur Bivd Northbrook, Illinois 60062-1917, U S A Phone (708) 291-0411 Fax (708) 498-2430 **Chicago-Technical Center** 3160 MacArthur Bivd Northbrook, Illinois 60062-1917, U S A Phone (708) 291-0411 Fax (708) 291-1028 **Los Angeles Office** 7341 Lincoln Way, Garden Grove, California 92641, U S A Phone (714) 894-5911 Telex (230) 678396 YASKAWAUS TSTN Fax (714) 894-3258 **New Jersey Office** 30 Two Bridges Road, Fairfield, New Jersey 07006 U S A Phone (211) 575-5940 Fax (201) 575-5947 **YASKAWA ELECTRIC EUROPE GmbH SUBSIDIARY** Niederhochstadter Stra*β*e 71-73. W 6242 Kronberg-Oberhochstadt, Germany Phone (06173) 640071, 640072 640073 Telex 415660 YASE D Fax (06173) 68421 **YASKAWA ELECTRIC DO BRASIL COMÉRCIO LTDA SUBSIDIARY** Av Brig Fana Lima, 1664-cj 721/724 Pinheiros, São Paulo-SP, Brasil CEP-01452 Phone (011) 813-3933, 813-3694 Telex (011) 82869 YSKW BR Fax (011) 815-8795 **YASKAWA ELECTRIC (SINGAPORE) PTE LTD** CPF Bidg, 79 Robinson Road No 13-05 Singapore 0106 Phone 2217530 Telex (87) 24890 YASKAWA RS Fax (65) 224-5854

YASKAWA ELECTRIC CORPORATION